Voir la notice de l'article provenant de la source Numdam
We investigate existence and uniqueness of solutions to a class of fractional parabolic equations satisfying prescribed point-wise conditions at infinity (in space), which can be time-dependent. Moreover, we study the asymptotic behavior of such solutions. We also consider solutions of elliptic equations satisfying appropriate conditions at infinity.
Punzo, Fabio 1 ; Valdinoci, Enrico 2
@article{COCV_2018__24_1_105_0, author = {Punzo, Fabio and Valdinoci, Enrico}, title = {Prescribed conditions at infinity for fractional parabolic and elliptic equations with unbounded coefficients}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {105--127}, publisher = {EDP-Sciences}, volume = {24}, number = {1}, year = {2018}, doi = {10.1051/cocv/2016077}, mrnumber = {3764136}, zbl = {1395.35197}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016077/} }
TY - JOUR AU - Punzo, Fabio AU - Valdinoci, Enrico TI - Prescribed conditions at infinity for fractional parabolic and elliptic equations with unbounded coefficients JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 105 EP - 127 VL - 24 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016077/ DO - 10.1051/cocv/2016077 LA - en ID - COCV_2018__24_1_105_0 ER -
%0 Journal Article %A Punzo, Fabio %A Valdinoci, Enrico %T Prescribed conditions at infinity for fractional parabolic and elliptic equations with unbounded coefficients %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 105-127 %V 24 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016077/ %R 10.1051/cocv/2016077 %G en %F COCV_2018__24_1_105_0
Punzo, Fabio; Valdinoci, Enrico. Prescribed conditions at infinity for fractional parabolic and elliptic equations with unbounded coefficients. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 105-127. doi: 10.1051/cocv/2016077
Cité par Sources :