Controllability of isotropic viscoelastic bodies of Maxwell–Boltzmann type
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1649-1666

Voir la notice de l'article provenant de la source Numdam

In this paper we consider a viscoelastic three dimensional body (of Maxwell–Boltzmann type) controlled on (part of) the boundary. We assume that the material is isotropic and homogeneous. If the body is elastic (i.e. no dissipation due to past memory), controllability has been studied by several authors. We prove that the viscoelastic body inherits the controllability properties of the corresponding purely elastic system. The proof relays on cosine operator methods combined with moment theory.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016068
Classification : 45K05, 93B03, 93B05, 93C22
Keywords: Controllability, systems with persistent memory, viscoelasticity

Pandolfi, L. 1

1 Dipartimento di Scienze Matematiche “Giuseppe Luigi Lagrange”, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
@article{COCV_2017__23_4_1649_0,
     author = {Pandolfi, L.},
     title = {Controllability of isotropic viscoelastic bodies of {Maxwell{\textendash}Boltzmann} type},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1649--1666},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {4},
     year = {2017},
     doi = {10.1051/cocv/2016068},
     zbl = {1398.93048},
     mrnumber = {3716936},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016068/}
}
TY  - JOUR
AU  - Pandolfi, L.
TI  - Controllability of isotropic viscoelastic bodies of Maxwell–Boltzmann type
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1649
EP  - 1666
VL  - 23
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016068/
DO  - 10.1051/cocv/2016068
LA  - en
ID  - COCV_2017__23_4_1649_0
ER  - 
%0 Journal Article
%A Pandolfi, L.
%T Controllability of isotropic viscoelastic bodies of Maxwell–Boltzmann type
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1649-1666
%V 23
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016068/
%R 10.1051/cocv/2016068
%G en
%F COCV_2017__23_4_1649_0
Pandolfi, L. Controllability of isotropic viscoelastic bodies of Maxwell–Boltzmann type. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1649-1666. doi: 10.1051/cocv/2016068

Cité par Sources :