Notes on the trace problem for separately convex functions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1617-1648

Voir la notice de l'article provenant de la source Numdam

We discuss the following question: for a function f of two or more variables which is convex in the directions of coordinate axes, what can its trace g(x)=f(x,x,...,x) look like? In the two-dimensional case, we provide some necessary and sufficient conditions, as well as some examples illustrating that our approach does not seem to be appropriate for finding a characterization in full generality. For a concave function g, however, a characterization in the two-dimensional case is established.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016066
Classification : 26B25
Keywords: Separately convex function, trace problem

Kurka, Ondřej 1 ; Pokorný, Dušan 1

1 Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8, Czech Republic.
@article{COCV_2017__23_4_1617_0,
     author = {Kurka, Ond\v{r}ej and Pokorn\'y, Du\v{s}an},
     title = {Notes on the trace problem for separately convex functions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1617--1648},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {4},
     year = {2017},
     doi = {10.1051/cocv/2016066},
     zbl = {1390.26023},
     mrnumber = {3716935},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016066/}
}
TY  - JOUR
AU  - Kurka, Ondřej
AU  - Pokorný, Dušan
TI  - Notes on the trace problem for separately convex functions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1617
EP  - 1648
VL  - 23
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016066/
DO  - 10.1051/cocv/2016066
LA  - en
ID  - COCV_2017__23_4_1617_0
ER  - 
%0 Journal Article
%A Kurka, Ondřej
%A Pokorný, Dušan
%T Notes on the trace problem for separately convex functions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1617-1648
%V 23
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016066/
%R 10.1051/cocv/2016066
%G en
%F COCV_2017__23_4_1617_0
Kurka, Ondřej; Pokorný, Dušan. Notes on the trace problem for separately convex functions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1617-1648. doi: 10.1051/cocv/2016066

Cité par Sources :