The regularity of solutions to some variational problems, including the p-Laplace equation for 2p<3
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1543-1553

Voir la notice de l'article provenant de la source Numdam

We consider the higher differentiability of solutions to the problem of minimizing

Ω [L(v(x))+g(x,v(x))]dxonu 0 +W 0 1,p (Ω)
where L(|ξ|)=1/p|ξ|p and u 0 W 1,p (Ω). We show that, for 2p<3, under suitable regularity assumptions on g, there exists a solution u to the Euler–Lagrange equation associated to the minimization problem, such that
uW loc 1,2 ().
In particular, for g(x,u)=f(x)u with fW 1,2 (Ω) and 2p<3, any W 1,p (Ω) weak solution to the equation
div (|u| p-2 u)=f
is in W 2,2 loc (Ω).

DOI : 10.1051/cocv/2016064
Classification : 49K10
Keywords: Regularity of solutions to variational problems – p-harmonic functions – higher differentiability
@article{COCV_2017__23_4_1543_0,
     author = {Cellina, Arrigo},
     title = {The regularity of solutions to some variational problems, including the $p${-Laplace} equation for $2 \leq{} p< 3$},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1543--1553},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {4},
     year = {2017},
     doi = {10.1051/cocv/2016064},
     mrnumber = {3716932},
     zbl = {1381.49015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016064/}
}
TY  - JOUR
AU  - Cellina, Arrigo
TI  - The regularity of solutions to some variational problems, including the $p$-Laplace equation for $2 \leq{} p< 3$
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1543
EP  - 1553
VL  - 23
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016064/
DO  - 10.1051/cocv/2016064
LA  - en
ID  - COCV_2017__23_4_1543_0
ER  - 
%0 Journal Article
%A Cellina, Arrigo
%T The regularity of solutions to some variational problems, including the $p$-Laplace equation for $2 \leq{} p< 3$
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1543-1553
%V 23
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016064/
%R 10.1051/cocv/2016064
%G en
%F COCV_2017__23_4_1543_0
Cellina, Arrigo. The regularity of solutions to some variational problems, including the $p$-Laplace equation for $2 \leq{} p< 3$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1543-1553. doi: 10.1051/cocv/2016064

Cité par Sources :