Voir la notice de l'article provenant de la source Numdam
We consider the higher differentiability of solutions to the problem of minimizing
@article{COCV_2017__23_4_1543_0, author = {Cellina, Arrigo}, title = {The regularity of solutions to some variational problems, including the $p${-Laplace} equation for $2 \leq{} p< 3$}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1543--1553}, publisher = {EDP-Sciences}, volume = {23}, number = {4}, year = {2017}, doi = {10.1051/cocv/2016064}, mrnumber = {3716932}, zbl = {1381.49015}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016064/} }
TY - JOUR AU - Cellina, Arrigo TI - The regularity of solutions to some variational problems, including the $p$-Laplace equation for $2 \leq{} p< 3$ JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 1543 EP - 1553 VL - 23 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016064/ DO - 10.1051/cocv/2016064 LA - en ID - COCV_2017__23_4_1543_0 ER -
%0 Journal Article %A Cellina, Arrigo %T The regularity of solutions to some variational problems, including the $p$-Laplace equation for $2 \leq{} p< 3$ %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 1543-1553 %V 23 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016064/ %R 10.1051/cocv/2016064 %G en %F COCV_2017__23_4_1543_0
Cellina, Arrigo. The regularity of solutions to some variational problems, including the $p$-Laplace equation for $2 \leq{} p< 3$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1543-1553. doi: 10.1051/cocv/2016064
Cité par Sources :