Multiplicity and concentration of positive solutions for the fractional Schrödinger–Poisson systems with critical growth
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1515-1542

Voir la notice de l'article provenant de la source Numdam

In this paper, we study the multiplicity and concentration of solutions for the following critical fractional Schrödinger–Poisson system:

ϵ 2s (-) s u+V(x)u+ϕu=f(u)+|u| 2 s * -2 uin 3 ,ϵ 2t (-) t ϕ=u 2 in 3 ,
where ϵ>0 is a small parameter, (-) α denotes the fractional Laplacian of order α=s,t(0,1), where 2 α * 6/3−2α is the fractional critical exponent in Dimension 3; VC 1 ( 3 , + ) and f is subcritical. We first prove that for ϵ>0 sufficiently small, the system has a positive ground state solution. With minimax theorems and Ljusternik–Schnirelmann theory, we investigate the relation between the number of positive solutions and the topology of the set where V attains its minimum for small ϵ. Moreover, each positive solution u ϵ converges to the least energy solution of the associated limit problem and concentrates around a global minimum point of V.

DOI : 10.1051/cocv/2016063
Classification : 35B25, 35B38, 35J65
Keywords: Fractional Schrödinger–Poisson system, positive solution, critical growth, variational method

Liu, Zhisu 1 ; Zhang, Jianjun 2, 3

1 School of Mathematics and Physics, University of South China, Hengyang, Hunan 421001, P.R. China.
2 College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, P.R. China.
3 Chern Institute of Mathematics, Nankai University, Tianjin 300071, P.R. China.
@article{COCV_2017__23_4_1515_0,
     author = {Liu, Zhisu and Zhang, Jianjun},
     title = {Multiplicity and concentration of positive solutions for the fractional {Schr\"odinger{\textendash}Poisson} systems with critical growth},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1515--1542},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {4},
     year = {2017},
     doi = {10.1051/cocv/2016063},
     mrnumber = {3716931},
     zbl = {06811887},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016063/}
}
TY  - JOUR
AU  - Liu, Zhisu
AU  - Zhang, Jianjun
TI  - Multiplicity and concentration of positive solutions for the fractional Schrödinger–Poisson systems with critical growth
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1515
EP  - 1542
VL  - 23
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016063/
DO  - 10.1051/cocv/2016063
LA  - en
ID  - COCV_2017__23_4_1515_0
ER  - 
%0 Journal Article
%A Liu, Zhisu
%A Zhang, Jianjun
%T Multiplicity and concentration of positive solutions for the fractional Schrödinger–Poisson systems with critical growth
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1515-1542
%V 23
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016063/
%R 10.1051/cocv/2016063
%G en
%F COCV_2017__23_4_1515_0
Liu, Zhisu; Zhang, Jianjun. Multiplicity and concentration of positive solutions for the fractional Schrödinger–Poisson systems with critical growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1515-1542. doi: 10.1051/cocv/2016063

Cité par Sources :