Voir la notice de l'article provenant de la source Numdam
We are going to prove the local exact bilinear controllability for a Schrödinger equation, set in a bounded regular domain, in a neighborhood of an eigenfunction corresponding to a simple eigenvalue in dimension . For a general domain we will require a non degeneracy condition of the normal derivative of the eigenfunction on a part of the boundary satisfying the Geometric Control Condition (see [G. Lebeau. J. Math. Pures Appl. 71 (1992) 267–291]) and for a rectangle when or an interval for no further condition. In the general case we will use real potentials concentrated in the neighborhood of and the linear controllability results with real and sufficiently regular controls.
Puel, Jean-Pierre 1
@article{COCV_2016__22_4_1264_0, author = {Puel, Jean-Pierre}, title = {Local exact bilinear control of the {Schr\"odinger} equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1264--1281}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016049}, zbl = {1354.35126}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016049/} }
TY - JOUR AU - Puel, Jean-Pierre TI - Local exact bilinear control of the Schrödinger equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1264 EP - 1281 VL - 22 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016049/ DO - 10.1051/cocv/2016049 LA - en ID - COCV_2016__22_4_1264_0 ER -
%0 Journal Article %A Puel, Jean-Pierre %T Local exact bilinear control of the Schrödinger equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1264-1281 %V 22 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016049/ %R 10.1051/cocv/2016049 %G en %F COCV_2016__22_4_1264_0
Puel, Jean-Pierre. Local exact bilinear control of the Schrödinger equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1264-1281. doi: 10.1051/cocv/2016049
Cité par Sources :