Local exact bilinear control of the Schrödinger equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1264-1281

Voir la notice de l'article provenant de la source Numdam

We are going to prove the local exact bilinear controllability for a Schrödinger equation, set in a bounded regular domain, in a neighborhood of an eigenfunction corresponding to a simple eigenvalue in dimension N3. For a general domain we will require a non degeneracy condition of the normal derivative of the eigenfunction on a part Γ 0 of the boundary satisfying the Geometric Control Condition (see [G. Lebeau. J. Math. Pures Appl. 71 (1992) 267–291]) and for a rectangle when N=2 or an interval for N=1 no further condition. In the general case we will use real potentials concentrated in the neighborhood of Γ 0 and the linear controllability results with real and sufficiently regular controls.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016049
Classification : 35B65, 35Q41
Keywords: Schrödinger equation, bilinear control

Puel, Jean-Pierre 1

1 Laboratoire de Mathématiques de Versailles, Université de Versailles St Quentin, 78035 Versailles cedex, France.
@article{COCV_2016__22_4_1264_0,
     author = {Puel, Jean-Pierre},
     title = {Local exact bilinear control of the {Schr\"odinger} equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1264--1281},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {4},
     year = {2016},
     doi = {10.1051/cocv/2016049},
     zbl = {1354.35126},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016049/}
}
TY  - JOUR
AU  - Puel, Jean-Pierre
TI  - Local exact bilinear control of the Schrödinger equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 1264
EP  - 1281
VL  - 22
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016049/
DO  - 10.1051/cocv/2016049
LA  - en
ID  - COCV_2016__22_4_1264_0
ER  - 
%0 Journal Article
%A Puel, Jean-Pierre
%T Local exact bilinear control of the Schrödinger equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 1264-1281
%V 22
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016049/
%R 10.1051/cocv/2016049
%G en
%F COCV_2016__22_4_1264_0
Puel, Jean-Pierre. Local exact bilinear control of the Schrödinger equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1264-1281. doi: 10.1051/cocv/2016049

Cité par Sources :