Voir la notice de l'article provenant de la source Numdam
This paper is addressed to establishing an internal observability estimate for some linear stochastic hyperbolic equations. The key is to establish a new global Carleman estimate for forward stochastic hyperbolic equations in the -space. Different from the deterministic case, a delicate analysis on the adaptedness for some stochastic processes is required in the stochastic setting.
Fu, Xiaoyu 1 ; Liu, Xu 2 ; Lü, Qi 1 ; Zhang, Xu 1
@article{COCV_2016__22_4_1382_0, author = {Fu, Xiaoyu and Liu, Xu and L\"u, Qi and Zhang, Xu}, title = {An internal observability estimate for stochastic hyperbolic equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1382--1411}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016042}, zbl = {1350.93021}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016042/} }
TY - JOUR AU - Fu, Xiaoyu AU - Liu, Xu AU - Lü, Qi AU - Zhang, Xu TI - An internal observability estimate for stochastic hyperbolic equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1382 EP - 1411 VL - 22 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016042/ DO - 10.1051/cocv/2016042 LA - en ID - COCV_2016__22_4_1382_0 ER -
%0 Journal Article %A Fu, Xiaoyu %A Liu, Xu %A Lü, Qi %A Zhang, Xu %T An internal observability estimate for stochastic hyperbolic equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1382-1411 %V 22 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016042/ %R 10.1051/cocv/2016042 %G en %F COCV_2016__22_4_1382_0
Fu, Xiaoyu; Liu, Xu; Lü, Qi; Zhang, Xu. An internal observability estimate for stochastic hyperbolic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1382-1411. doi : 10.1051/cocv/2016042. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016042/
Sharp sufficient conditions for the observation, control and stabilizion of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. | Zbl | DOI
, and ,J.-M. Coron, Control and Nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society Providence, RI (2007). | Zbl
On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. Henri Poincaré, Anal. Non Lin. 25 (2008) 1–41. | Zbl | mathdoc-id | DOI
, and ,Exact controllability for multidimensional semilinear hyperbolic equations. SIAM J. Control Optim. 46 (2007) 1578–1614. | Zbl | DOI
, and ,L. Hörmander, Linear Partial Differential Operators. Springer-Verlag, Berlin (1963). | Zbl
On Carleman estimates for hyperbolic equations. Asymptot. Anal. 32 (2002) 185–220. | Zbl
,Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill-Posed Probl. 21 (2013) 477–560. | Zbl | DOI
,M.M. Lavrent’ev, V.G. Romanov and S.P. Shishatskiĭ, Ill-Posed Problems of Mathematical Physics and Analysis. Vol. 64 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1986). | Zbl
Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. | Zbl | MR | DOI
,Global Carleman estimate for stochastic parabolic equaitons, and its application. ESAIM: COCV 20 (2014) 823–839. | Zbl | mathdoc-id
,Some sufficient conditions for the controllability of wave equations with variable coefficients. Acta Appl. Math. 128 (2013) 181–191. | Zbl | DOI
,Observability estimate and state observation problems for stochastic hyperbolic equations. Inverse Probl. 29 (2013) 095011. | Zbl | DOI
,Global uniqueness for an inverse stochastic hyperbolic problem with three unknowns. Commun. Pure Appl. Math. 68 (2015) 948–963. | Zbl | DOI
and ,Controllability and stabilizability theory for linear partial differential equations: recent progress and open problems. SIAM Rev. 20 (1978) 639–739. | Zbl | DOI
,Explicit observability estimate for the wave equation with potential and its application. R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci. 456 (2000) 1101–1115. | Zbl | DOI
,Carleman and observability estimates for stochastic wave equations. SIAM J. Math. Anal. 40 (2008) 851–868. | Zbl | DOI
,Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. Henri Poincaré, Anal. Non Lin. 10 (1993) 109–129. | Zbl | MR | mathdoc-id | DOI
,Cité par Sources :