Voir la notice de l'article provenant de la source Numdam
Based on the theory of semi-global classical solutions for quasilinear hyperbolic systems, under suitable hypotheses, an iteration procedure given by a unified constructive method is presented to establish the exact boundary synchronization for a coupled system of 1-D quasilinear wave equations with boundary conditions of various types.
Hu, Long 1, 2, 3 ; Li, Tatsien 4 ; Qu, Peng 2
@article{COCV_2016__22_4_1163_0, author = {Hu, Long and Li, Tatsien and Qu, Peng}, title = {Exact boundary synchronization for a coupled system of {1-D} quasilinear wave equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1163--1183}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016035}, zbl = {1350.93040}, mrnumber = {3570498}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016035/} }
TY - JOUR AU - Hu, Long AU - Li, Tatsien AU - Qu, Peng TI - Exact boundary synchronization for a coupled system of 1-D quasilinear wave equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1163 EP - 1183 VL - 22 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016035/ DO - 10.1051/cocv/2016035 LA - en ID - COCV_2016__22_4_1163_0 ER -
%0 Journal Article %A Hu, Long %A Li, Tatsien %A Qu, Peng %T Exact boundary synchronization for a coupled system of 1-D quasilinear wave equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1163-1183 %V 22 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016035/ %R 10.1051/cocv/2016035 %G en %F COCV_2016__22_4_1163_0
Hu, Long; Li, Tatsien; Qu, Peng. Exact boundary synchronization for a coupled system of 1-D quasilinear wave equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1163-1183. doi: 10.1051/cocv/2016035
Cité par Sources :