Voir la notice de l'article provenant de la source Numdam
In this paper we present a new proof of the null controllability property for the Stokes system. The proof is based on a new spectral inequality for the eigenfunctions of the Stokes operator. As a consequence, we obtain the cost of the null controllability for the Stokes system of order , when is small, i.e., the same order in time as for the heat equation.
Chaves-Silva, Felipe W. 1 ; Lebeau, Gilles 1
@article{COCV_2016__22_4_1137_0, author = {Chaves-Silva, Felipe W. and Lebeau, Gilles}, title = {Spectral inequality and optimal cost of controllability for the {Stokes} system}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1137--1162}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016034}, zbl = {1357.35178}, mrnumber = {3570497}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016034/} }
TY - JOUR AU - Chaves-Silva, Felipe W. AU - Lebeau, Gilles TI - Spectral inequality and optimal cost of controllability for the Stokes system JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1137 EP - 1162 VL - 22 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016034/ DO - 10.1051/cocv/2016034 LA - en ID - COCV_2016__22_4_1137_0 ER -
%0 Journal Article %A Chaves-Silva, Felipe W. %A Lebeau, Gilles %T Spectral inequality and optimal cost of controllability for the Stokes system %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1137-1162 %V 22 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016034/ %R 10.1051/cocv/2016034 %G en %F COCV_2016__22_4_1137_0
Chaves-Silva, Felipe W.; Lebeau, Gilles. Spectral inequality and optimal cost of controllability for the Stokes system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1137-1162. doi: 10.1051/cocv/2016034
Cité par Sources :