Voir la notice de l'article provenant de la source Numdam
In this paper we present a new proof of the null controllability property for the Stokes system. The proof is based on a new spectral inequality for the eigenfunctions of the Stokes operator. As a consequence, we obtain the cost of the null controllability for the Stokes system of order , when is small, i.e., the same order in time as for the heat equation.
Chaves-Silva, Felipe W. 1 ; Lebeau, Gilles 1
@article{COCV_2016__22_4_1137_0, author = {Chaves-Silva, Felipe W. and Lebeau, Gilles}, title = {Spectral inequality and optimal cost of controllability for the {Stokes} system}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1137--1162}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016034}, zbl = {1357.35178}, mrnumber = {3570497}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016034/} }
TY - JOUR AU - Chaves-Silva, Felipe W. AU - Lebeau, Gilles TI - Spectral inequality and optimal cost of controllability for the Stokes system JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1137 EP - 1162 VL - 22 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016034/ DO - 10.1051/cocv/2016034 LA - en ID - COCV_2016__22_4_1137_0 ER -
%0 Journal Article %A Chaves-Silva, Felipe W. %A Lebeau, Gilles %T Spectral inequality and optimal cost of controllability for the Stokes system %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1137-1162 %V 22 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016034/ %R 10.1051/cocv/2016034 %G en %F COCV_2016__22_4_1137_0
Chaves-Silva, Felipe W.; Lebeau, Gilles. Spectral inequality and optimal cost of controllability for the Stokes system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1137-1162. doi : 10.1051/cocv/2016034. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016034/
A hyperbolic system and the cost of the null controllability for the Stokes system. Comput. Appl. Math. 34 (2015) 1057–1074. | Zbl | DOI
,Null controllability of the N-dimensional Stokes system with N-1 scalar controls. J. Differ. Equ. 246 (2009) 2908–2921. | Zbl | DOI
and ,M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, Vol. 268 of Lecture Note Series. Cambridge University Press, London (1999) vii+226p. | Zbl
Observability of heat processes by transmutation without geometric restrictions. Math. Control Rel. Fields 1 (2011) 177–187. | Zbl | DOI
and ,Sharp observability estimates for heat equations. Arch. Rational Mech. Anal. 202 (2011) 975–1017. | Zbl | DOI
and ,Régularité et unicité pour le problème de Stokes. Commun. Partial Differ. Equ. 27 (2002) 437–475. | Zbl | DOI
and ,The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5 (2000) 465–514. | Zbl
and ,Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542. | Zbl | DOI
, , and ,Some controllability results for the N-dimensional Navier-Stokes and Boussinesq system. SIAM J. Control Optim. 45 (2006) 146–173. | Zbl | DOI
, , and ,A.V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Vol. 34 of Lecture Notes Series. Research Institute of Mathematics, Seoul National University, Seoul (1996). | Zbl | MR
Remarks on exact controllability for the Navier−Stokes equations. ESAIM: COCV 6 (2001) 39–72. | Zbl | MR | mathdoc-id
,Carleman estimates for parabolic equations with nonhomogeneous boundary conditions. Chin. Ann. Math. Ser. B 30 (2009) 333–378. | Zbl | MR | DOI
, and ,O. Yu. Imanuvilov, J.-P. Puel and M. Yamamoto, Carleman estimates for second order non homogeneous parabolic equations (preprint).
G. Lebeau, Introduction aux inégalités de Carleman. Séminaires et Congrès. In vol. 29. Publications SMF (2015) 51–92. | MR
Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Equ. 20 (1995) 335–356. | MR | Zbl | DOI
and ,Null controllability of a system of linear thermoelasticity. Arch. Ration. Mech. Anal. 141 (1998) 297–329. | Zbl | MR | DOI
and ,On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM: COCV 18 (2012) 712–747. | Zbl | MR | mathdoc-id
and ,A. Martinez, An introduction to Semiclassical and Microlocal Analysis. Springer, New York (2002). | Zbl | MR
Valeurs propres d’opérateurs définis par la restriction de systèmes variationnels à des sous-espaces. J. Math. Pures Appl. 9 (1978) 133–156. | Zbl | MR
,Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time. J. Differ. Equ. 204 (2004) 202–226. | Zbl | MR | DOI
,The Control Transmutation Method and the cost of fast controls. SIAM J. Control Optim. 45 (2006) 762–772. | Zbl | MR | DOI
,A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 1465–1485. | Zbl | MR
,Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptot. Anal. 10 (1995) 95–115. | Zbl | MR
,How violent are fast controls: III. J. Math. Anal. Appl. 339 (2008) 461–468. | Zbl | MR | DOI
,Cité par Sources :