Voir la notice de l'article provenant de la source Numdam
We study possibilities to control an ensemble (a parameterized family) of nonlinear control systems by a single parameter-independent control. Proceeding by Lie algebraic methods we establish genericity of exact controllability property for finite ensembles, prove sufficient approximate controllability condition for a model problem in , and provide a variant of Rashevsky−Chow theorem for approximate controllability of control-linear ensembles.
Agrachev, Andrei 1, 2 ; Baryshnikov, Yuliy 3 ; Sarychev, Andrey 4
@article{COCV_2016__22_4_921_0, author = {Agrachev, Andrei and Baryshnikov, Yuliy and Sarychev, Andrey}, title = {Ensemble controllability by {Lie} algebraic methods}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {921--938}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016029}, zbl = {1350.93014}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016029/} }
TY - JOUR AU - Agrachev, Andrei AU - Baryshnikov, Yuliy AU - Sarychev, Andrey TI - Ensemble controllability by Lie algebraic methods JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 921 EP - 938 VL - 22 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016029/ DO - 10.1051/cocv/2016029 LA - en ID - COCV_2016__22_4_921_0 ER -
%0 Journal Article %A Agrachev, Andrei %A Baryshnikov, Yuliy %A Sarychev, Andrey %T Ensemble controllability by Lie algebraic methods %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 921-938 %V 22 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016029/ %R 10.1051/cocv/2016029 %G en %F COCV_2016__22_4_921_0
Agrachev, Andrei; Baryshnikov, Yuliy; Sarychev, Andrey. Ensemble controllability by Lie algebraic methods. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 921-938. doi: 10.1051/cocv/2016029
Cité par Sources :