Bifurcation and segregation in quadratic two-populations mean field games systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 1145-1177

Voir la notice de l'article provenant de la source Numdam

We search for non-constant normalized solutions to the semilinear elliptic system

-νΔv i +g i (v j 2 )v i =λ i v i ,v i >0inΩ n v i =0onΩ Ω v i 2 dx=1,1i,j2,ji,
where ν>0, ΩR N is smooth and bounded, the functions g i are positive and increasing, and both the functions v i and the parameters λ i are unknown. This system is obtained, via the Hopf−Cole transformation, from a two-populations ergodic Mean Field Games system, which describes Nash equilibria in differential games with identical players. In these models, each population consists of a very large number of indistinguishable rational agents, aiming at minimizing some long-time average criterion. Firstly, we discuss existence of nontrivial solutions, using variational methods when g i (s)=s, and bifurcation ones in the general case; secondly, for selected families of nontrivial solutions, we address the appearing of segregation in the vanishing viscosity limit, i.e.
Ω v 1 v 2 0asν0.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016028
Classification : 35J47, 49N70, 35B25, 35B32
Keywords: Singularly perturbed problems, normalized solutions to semilinear elliptic systems, multi-population differential games

Cirant, Marco 1 ; Verzini, Gianmaria 2

1 Dipartimento di Matematica, Università di Milano, via Cesare Saldini 50, 20133 Milano, Italy
2 Dipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy
@article{COCV_2017__23_3_1145_0,
     author = {Cirant, Marco and Verzini, Gianmaria},
     title = {Bifurcation and segregation in quadratic two-populations mean field games systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1145--1177},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2016028},
     zbl = {1371.35110},
     mrnumber = {3660463},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016028/}
}
TY  - JOUR
AU  - Cirant, Marco
AU  - Verzini, Gianmaria
TI  - Bifurcation and segregation in quadratic two-populations mean field games systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1145
EP  - 1177
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016028/
DO  - 10.1051/cocv/2016028
LA  - en
ID  - COCV_2017__23_3_1145_0
ER  - 
%0 Journal Article
%A Cirant, Marco
%A Verzini, Gianmaria
%T Bifurcation and segregation in quadratic two-populations mean field games systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1145-1177
%V 23
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016028/
%R 10.1051/cocv/2016028
%G en
%F COCV_2017__23_3_1145_0
Cirant, Marco; Verzini, Gianmaria. Bifurcation and segregation in quadratic two-populations mean field games systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 1145-1177. doi: 10.1051/cocv/2016028

Cité par Sources :