On non-convex anisotropic surface energy regularized via the Willmore functional: The two-dimensional graph setting
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 1047-1071

Voir la notice de l'article provenant de la source Numdam

We regularize non-convex anisotropic surface energy of a two-dimensional surface, given as a graph over the two-dimensional unit disk, by the Willmore functional and investigate existence of the corresponding global minimizers. Restricting to the rotationally symmetric case, we obtain a one-dimensional variational problem which permits to derive substantial qualitative information on the minimizers. We show that minimizers tend to a “cone”-like solution as the regularization parameter tends to zero. Areas where the solutions are either convex or concave are identified. It turns out that the structure of the chosen anisotropy hardly affects the qualitative shape of the minimizers.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016024
Classification : 35J35, 35B65, 35B07
Keywords: Non-convex anisotropy, regularization, Willmore functional, rotationally symmetric solutions

Pozzi, Paola 1 ; Reiter, Philipp 1

1 Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann-Straße 9, 45127 Essen, Germany.
@article{COCV_2017__23_3_1047_0,
     author = {Pozzi, Paola and Reiter, Philipp},
     title = {On non-convex anisotropic surface energy regularized via the {Willmore} functional: {The} two-dimensional graph setting},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1047--1071},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2016024},
     mrnumber = {3660459},
     zbl = {1371.35073},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016024/}
}
TY  - JOUR
AU  - Pozzi, Paola
AU  - Reiter, Philipp
TI  - On non-convex anisotropic surface energy regularized via the Willmore functional: The two-dimensional graph setting
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1047
EP  - 1071
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016024/
DO  - 10.1051/cocv/2016024
LA  - en
ID  - COCV_2017__23_3_1047_0
ER  - 
%0 Journal Article
%A Pozzi, Paola
%A Reiter, Philipp
%T On non-convex anisotropic surface energy regularized via the Willmore functional: The two-dimensional graph setting
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1047-1071
%V 23
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016024/
%R 10.1051/cocv/2016024
%G en
%F COCV_2017__23_3_1047_0
Pozzi, Paola; Reiter, Philipp. On non-convex anisotropic surface energy regularized via the Willmore functional: The two-dimensional graph setting. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 1047-1071. doi: 10.1051/cocv/2016024

Cité par Sources :