On coupled systems of Kolmogorov equations with applications to stochastic differential games
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 937-976

Voir la notice de l'article provenant de la source Numdam

We prove that a family of linear bounded evolution operators (𝐆(t,s)) tsI can be associated, in the space of vector-valued bounded and continuous functions, to a class of systems of elliptic operators 𝒜 with unbounded coefficients defined in I × d (where I is a right-halfline or I = ) all having the same principal part. We establish some continuity and representation properties of (𝐆(t,s)) tsI and a sufficient condition for the evolution operator to be compact in C b ( d ; m ) . We prove also a uniform weighted gradient estimate and some of its more relevant consequence.

DOI : 10.1051/cocv/2016019
Classification : 35K45, 35K58, 47B07, 60H10, 91A15
Keywords: Nonautonomous parabolic systems, unbounded coefficients, evolution operators, compactness, gradient estimates, semilinear systems, stochastic games

Addona, Davide 1 ; Angiuli, Luciana 2 ; Lorenzi, Luca 3 ; Tessitore, Gianmario 1

1 Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca, Via Cozzi 55, 20125 Milano, Italy.
2 Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy.
3 Dipartimento di Matematica e Informatica, Università degli Studi di Parma, Parco Area delle Scienze 53/A, 43124 Parma, Italy.
@article{COCV_2017__23_3_937_0,
     author = {Addona, Davide and Angiuli, Luciana and Lorenzi, Luca and Tessitore, Gianmario},
     title = {On coupled systems of {Kolmogorov} equations with applications to stochastic differential games},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {937--976},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2016019},
     zbl = {1371.35144},
     mrnumber = {3660455},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016019/}
}
TY  - JOUR
AU  - Addona, Davide
AU  - Angiuli, Luciana
AU  - Lorenzi, Luca
AU  - Tessitore, Gianmario
TI  - On coupled systems of Kolmogorov equations with applications to stochastic differential games
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 937
EP  - 976
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016019/
DO  - 10.1051/cocv/2016019
LA  - en
ID  - COCV_2017__23_3_937_0
ER  - 
%0 Journal Article
%A Addona, Davide
%A Angiuli, Luciana
%A Lorenzi, Luca
%A Tessitore, Gianmario
%T On coupled systems of Kolmogorov equations with applications to stochastic differential games
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 937-976
%V 23
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016019/
%R 10.1051/cocv/2016019
%G en
%F COCV_2017__23_3_937_0
Addona, Davide; Angiuli, Luciana; Lorenzi, Luca; Tessitore, Gianmario. On coupled systems of Kolmogorov equations with applications to stochastic differential games. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 937-976. doi: 10.1051/cocv/2016019

Cité par Sources :