Homogenization of metrics in oscillating manifolds
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 889-912

Voir la notice de l'article provenant de la source Numdam

We consider energies defined as the Dirichlet integral of curves taking values in fast-oscillating manifolds converging to a linear subspace. We model such manifolds as subsets of R m+m' described by a constraint (x m+1 ,...,x m' )=δϕ(x 1 /ε,...,x m /ε) where ε is the period of the oscillation, δ its amplitude and ϕ its profile. The interesting case is ε<<δ<<1, in which the limit of the energies is described by a Finsler metric on R m which is defined by optimizing the contribution of oscillations on each level set {ϕ=c}. The formulas describing the limit mix homogenization and convexification processes, highlighting a multi-scale behaviour of optimal sequences. We apply these formulas to show that we may obtain all (homogeneous) symmetric Finsler metrics larger than the Euclidean metric as limits in the case of oscillating surfaces in R 3 .

DOI : 10.1051/cocv/2016018
Classification : 35B27, 49J45, 58B20
Keywords: Homogenization, oscillating manifolds, Finsler metrics

Braides, Andrea 1 ; Cancedda, Andrea 2 ; Piat, Valeria Chiadò 2

1 Dipartimento di Matematica, Università di Roma “Tor Vergata”, via della ricerca scientifica 1, 00133 Roma, Italy.
2 Dipartimento di Scienze Matematiche, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy.
@article{COCV_2017__23_3_889_0,
     author = {Braides, Andrea and Cancedda, Andrea and Piat, Valeria Chiad\`o},
     title = {Homogenization of metrics in oscillating manifolds},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {889--912},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2016018},
     mrnumber = {3660453},
     zbl = {1367.35023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016018/}
}
TY  - JOUR
AU  - Braides, Andrea
AU  - Cancedda, Andrea
AU  - Piat, Valeria Chiadò
TI  - Homogenization of metrics in oscillating manifolds
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 889
EP  - 912
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016018/
DO  - 10.1051/cocv/2016018
LA  - en
ID  - COCV_2017__23_3_889_0
ER  - 
%0 Journal Article
%A Braides, Andrea
%A Cancedda, Andrea
%A Piat, Valeria Chiadò
%T Homogenization of metrics in oscillating manifolds
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 889-912
%V 23
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016018/
%R 10.1051/cocv/2016018
%G en
%F COCV_2017__23_3_889_0
Braides, Andrea; Cancedda, Andrea; Piat, Valeria Chiadò. Homogenization of metrics in oscillating manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 889-912. doi: 10.1051/cocv/2016018

Cité par Sources :