On the identification of piecewise constant coefficients in optical diffusion tomography by level set
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 663-683

Voir la notice de l'article provenant de la source Numdam

In this paper, we propose a level set regularization approach combined with a split strategy for the simultaneous identification of piecewise constant diffusion and absorption coefficients from a finite set of optical tomography data (Neumann-to-Dirichlet data). This problem is a high nonlinear inverse problem combining together the exponential and mildly ill-posedness of diffusion and absorption coefficients, respectively. We prove that the parameter-to-measurement map satisfies sufficient conditions (continuity in the L 1 topology) to guarantee regularization properties of the proposed level set approach. On the other hand, numerical tests considering different configurations bring new ideas on how to propose a convergent split strategy for the simultaneous identification of the coefficients. The behavior and performance of the proposed numerical strategy is illustrated with some numerical examples.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016007
Classification : 49N45, 65N21, 74J25
Keywords: Optical tomography, parameter identification, level set regularization, numerical strategy

Agnelli, J. P. 1 ; De Cezaro, A. 2 ; Leitão, A. 3 ; Marques Alves, M. 3

1 FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, X5000HUA, Córdoba, Argentina.
2 Institute of Mathematics Statistics and Physics, Federal University of Rio Grande, Av. Italia km 8, 96201-900 Rio Grande, Brazil.
3 Department of Mathematics, Federal University of St. Catarina, P.O. Box 476, 88040-900 Florianópolis, Brazil.
@article{COCV_2017__23_2_663_0,
     author = {Agnelli, J. P. and De Cezaro, A. and Leit\~ao, A. and Marques Alves, M.},
     title = {On the identification of piecewise constant coefficients in optical diffusion tomography by level set},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {663--683},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {2},
     year = {2017},
     doi = {10.1051/cocv/2016007},
     mrnumber = {3608098},
     zbl = {1358.49031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016007/}
}
TY  - JOUR
AU  - Agnelli, J. P.
AU  - De Cezaro, A.
AU  - Leitão, A.
AU  - Marques Alves, M.
TI  - On the identification of piecewise constant coefficients in optical diffusion tomography by level set
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 663
EP  - 683
VL  - 23
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016007/
DO  - 10.1051/cocv/2016007
LA  - en
ID  - COCV_2017__23_2_663_0
ER  - 
%0 Journal Article
%A Agnelli, J. P.
%A De Cezaro, A.
%A Leitão, A.
%A Marques Alves, M.
%T On the identification of piecewise constant coefficients in optical diffusion tomography by level set
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 663-683
%V 23
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016007/
%R 10.1051/cocv/2016007
%G en
%F COCV_2017__23_2_663_0
Agnelli, J. P.; De Cezaro, A.; Leitão, A.; Marques Alves, M. On the identification of piecewise constant coefficients in optical diffusion tomography by level set. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 663-683. doi: 10.1051/cocv/2016007

Cité par Sources :