Voir la notice de l'article provenant de la source Numdam
Mean Field Game systems describe equilibrium configurations in differential games with infinitely many infinitesimal interacting agents. We introduce a learning procedure (similar to the Fictitious Play) for these games and show its convergence when the Mean Field Game is potential.
Cardaliaguet, Pierre 1 ; Hadikhanloo, Saeed 2
@article{COCV_2017__23_2_569_0, author = {Cardaliaguet, Pierre and Hadikhanloo, Saeed}, title = {Learning in mean field games: {The} fictitious play}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {569--591}, publisher = {EDP-Sciences}, volume = {23}, number = {2}, year = {2017}, doi = {10.1051/cocv/2016004}, mrnumber = {3608094}, zbl = {1365.35183}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016004/} }
TY - JOUR AU - Cardaliaguet, Pierre AU - Hadikhanloo, Saeed TI - Learning in mean field games: The fictitious play JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 569 EP - 591 VL - 23 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016004/ DO - 10.1051/cocv/2016004 LA - en ID - COCV_2017__23_2_569_0 ER -
%0 Journal Article %A Cardaliaguet, Pierre %A Hadikhanloo, Saeed %T Learning in mean field games: The fictitious play %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 569-591 %V 23 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016004/ %R 10.1051/cocv/2016004 %G en %F COCV_2017__23_2_569_0
Cardaliaguet, Pierre; Hadikhanloo, Saeed. Learning in mean field games: The fictitious play. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 569-591. doi: 10.1051/cocv/2016004
Cité par Sources :