On the condition of tetrahedral polyconvexity, arising from calculus of variations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 475-495

Voir la notice de l'article provenant de la source Numdam

We study geometric conditions for integrand f to define lower semicontinuous functional of the form I f (u)= Ω f(u)dx, where u satisfies certain conservation law. Of our particular interest is tetrahedral convexity condition introduced by the first author in 2003, which is the variant of maximum principle expressed on tetrahedrons, and the new condition which we call tetrahedral polyconvexity. We prove that second condition is sufficient but it is not necessary for lower semicontinuity of I f , tetrahedral polyconvexity condition is non-local and both conditions are not equivalent. Problems we discuss are strongly connected with the rank-one conjecture of Morrey known in the multidimensional calculus of variations.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2015057
Classification : 49J10, 49J45
Keywords: Quasiconvexity, compensated compactness, calculus of variations

Kałamajska, Agnieszka 1, 2 ; Kozarzewski, Piotr 1, 3

1 Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland
2 Institute of Mathematics Polish Academy of Sciences, ul. Śniadeckich 8, P.O. Box 21, 00-956 Warszawa, Poland.
3 Institute of Mathematics and Cryptology, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland.
@article{COCV_2017__23_2_475_0,
     author = {Ka{\l}amajska, Agnieszka and Kozarzewski, Piotr},
     title = {On the condition of tetrahedral polyconvexity, arising from calculus of variations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {475--495},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {2},
     year = {2017},
     doi = {10.1051/cocv/2015057},
     zbl = {1358.49001},
     mrnumber = {3608090},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015057/}
}
TY  - JOUR
AU  - Kałamajska, Agnieszka
AU  - Kozarzewski, Piotr
TI  - On the condition of tetrahedral polyconvexity, arising from calculus of variations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 475
EP  - 495
VL  - 23
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015057/
DO  - 10.1051/cocv/2015057
LA  - en
ID  - COCV_2017__23_2_475_0
ER  - 
%0 Journal Article
%A Kałamajska, Agnieszka
%A Kozarzewski, Piotr
%T On the condition of tetrahedral polyconvexity, arising from calculus of variations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 475-495
%V 23
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015057/
%R 10.1051/cocv/2015057
%G en
%F COCV_2017__23_2_475_0
Kałamajska, Agnieszka; Kozarzewski, Piotr. On the condition of tetrahedral polyconvexity, arising from calculus of variations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 475-495. doi: 10.1051/cocv/2015057

Cité par Sources :