Necessary stochastic maximum principle for dissipative systems on infinite time horizon
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 337-371

Voir la notice de l'article provenant de la source Numdam

We develop a stochastic maximum principle for a finite-dimensional stochastic control problem in infinite horizon under a polynomial growth and joint monotonicity assumption on the coefficients. The second assumption generalizes the usual one in the sense that it is formulated as a joint condition for the drift and the diffusion term. The main difficulties concern the construction of the first and second order adjoint processes by solving backward equations on an unbounded time interval. The first adjoint process is characterized as a solution to a backward SDE, which is well-posed thanks to a duality argument. The second one can be defined via another duality relation written in terms of the Hamiltonian of the system and linearized state equation. Some known models verifying the joint monotonicity assumption are discussed as well.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2015054
Classification : 93E20, 60H10, 49K45
Keywords: Stochastic maximum principle, dissipative systems, backward stochastic differential equation, stochastic discounted control problem, infinite time horizon, necessary conditions for optimality

Orrieri, Carlo 1 ; Veverka, Petr 2

1 Dipartimento di Matematica, Università di Pavia. via Ferrata 1, 27100 Pavia, Italia
2 Dipartimento di Matematica, Politecnico di Milano. via Bonardi 9, 20133 Milano, Italia
@article{COCV_2017__23_1_337_0,
     author = {Orrieri, Carlo and Veverka, Petr},
     title = {Necessary stochastic maximum principle for dissipative systems on infinite time horizon},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {337--371},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {1},
     year = {2017},
     doi = {10.1051/cocv/2015054},
     mrnumber = {3601027},
     zbl = {1354.93178},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015054/}
}
TY  - JOUR
AU  - Orrieri, Carlo
AU  - Veverka, Petr
TI  - Necessary stochastic maximum principle for dissipative systems on infinite time horizon
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 337
EP  - 371
VL  - 23
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015054/
DO  - 10.1051/cocv/2015054
LA  - en
ID  - COCV_2017__23_1_337_0
ER  - 
%0 Journal Article
%A Orrieri, Carlo
%A Veverka, Petr
%T Necessary stochastic maximum principle for dissipative systems on infinite time horizon
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 337-371
%V 23
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015054/
%R 10.1051/cocv/2015054
%G en
%F COCV_2017__23_1_337_0
Orrieri, Carlo; Veverka, Petr. Necessary stochastic maximum principle for dissipative systems on infinite time horizon. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 337-371. doi: 10.1051/cocv/2015054

Cité par Sources :