Voir la notice de l'article provenant de la source Numdam
In this paper we study the asymptotic behavior of some optimal design problems related to nonlinear Steklov eigenvalues, under irregular (but diffeomorphic) perturbations of the domain.
Bonder, Julián Fernández 1 ; Spedaletti, Juan F. 2
@article{COCV_2017__23_2_373_0, author = {Bonder, Juli\'an Fern\'andez and Spedaletti, Juan F.}, title = {A shape optimization problem for {Steklov} eigenvalues in oscillating domains}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {373--390}, publisher = {EDP-Sciences}, volume = {23}, number = {2}, year = {2017}, doi = {10.1051/cocv/2015050}, mrnumber = {3608085}, zbl = {1362.35198}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015050/} }
TY - JOUR AU - Bonder, Julián Fernández AU - Spedaletti, Juan F. TI - A shape optimization problem for Steklov eigenvalues in oscillating domains JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 373 EP - 390 VL - 23 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015050/ DO - 10.1051/cocv/2015050 LA - en ID - COCV_2017__23_2_373_0 ER -
%0 Journal Article %A Bonder, Julián Fernández %A Spedaletti, Juan F. %T A shape optimization problem for Steklov eigenvalues in oscillating domains %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 373-390 %V 23 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015050/ %R 10.1051/cocv/2015050 %G en %F COCV_2017__23_2_373_0
Bonder, Julián Fernández; Spedaletti, Juan F. A shape optimization problem for Steklov eigenvalues in oscillating domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 373-390. doi : 10.1051/cocv/2015050. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015050/
A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. Corrected reprint of the 1978 original. AMS Chelsea Publishing, Providence, RI (2011). | Zbl | MR
A. Braides, -convergence for beginners, Vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002). | Zbl | MR
D. Cioranescu and F. Murat, A strange term coming from nowhere. In Topics in the Mathematical Modelling of Composite Materials. Vol. 31 of Progr. Nonlinear Differential Equations Appl. Birkhäuser Boston, Boston, MA (1997) 45–93. | Zbl | MR
G. Dal Maso, An introduction to -convergence. Vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (1993). | MR | Zbl
Optimal boundary holes for the Sobolev trace constant. J. Differ. Eq. 251 (2011) 2327–2351. | Zbl | MR | DOI
, and ,Windows of given area with minimal heat diffusion. Trans. Amer. Math. Soc. 351 (1999) 569–580. | Zbl | MR | DOI
,Optimization of the first Steklov eigenvalue in domains with holes: a shape derivative approach. Ann. Mat. Pura Appl. 186 (2007) 341–358. | Zbl | MR | DOI
, and ,The best Sobolev trace constant in a domain with oscillating boundary. Nonlinear Anal. 67 (2007) 1173–1180. | Zbl | MR | DOI
, and ,Existence results for the -Laplacian with nonlinear boundary conditions. J. Math. Anal. Appl. 263 (2001) 195–223. | Zbl | MR | DOI
and ,A. Henrot and M. Pierre, Variation et optimisation de formes. Une analyse géométrique (A geometric analysis). Vol. 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin (2005). | Zbl | MR
E. Sánchez-Palencia, Nonhomogeneous media and vibration theory. Vol. 12 of Lect. Notes Phys. Springer-Verlag, Berlin, New York (1980). | Zbl | MR
J. Simon, Régularité de la solution d’une équation non linéaire dans . Journées d’Analyse Non Linéaire (Proc. Conf., Besançon, 1977). Vol. 665 of Lect. Notes Math. Springer, Berlin (1978) 205–227. | Zbl | MR
Cité par Sources :