Voir la notice de l'article provenant de la source Numdam
Models for branched networks are often expressed as the minimization of an energy over vector measures concentrated on -dimensional rectifiable sets with a divergence constraint. We study a Modica–Mortola type approximation , introduced by Edouard Oudet and Filippo Santambrogio, which is defined over vector measures. These energies induce some pseudo-distances between functions obtained through the minimization problem : . We prove some uniform estimates on these pseudo-distances which allow us to establish a -convergence result for these energies with a divergence constraint.
Monteil, Antonin 1
@article{COCV_2017__23_1_309_0, author = {Monteil, Antonin}, title = {Uniform estimates for a {Modica{\textendash}Mortola} type approximation of branched transportation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {309--335}, publisher = {EDP-Sciences}, volume = {23}, number = {1}, year = {2017}, doi = {10.1051/cocv/2015049}, mrnumber = {3601026}, zbl = {1385.49006}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015049/} }
TY - JOUR AU - Monteil, Antonin TI - Uniform estimates for a Modica–Mortola type approximation of branched transportation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 309 EP - 335 VL - 23 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015049/ DO - 10.1051/cocv/2015049 LA - en ID - COCV_2017__23_1_309_0 ER -
%0 Journal Article %A Monteil, Antonin %T Uniform estimates for a Modica–Mortola type approximation of branched transportation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 309-335 %V 23 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015049/ %R 10.1051/cocv/2015049 %G en %F COCV_2017__23_1_309_0
Monteil, Antonin. Uniform estimates for a Modica–Mortola type approximation of branched transportation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 309-335. doi: 10.1051/cocv/2015049
Cité par Sources :