A Wasserstein gradient flow approach to Poisson−Nernst−Planck equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 137-164

Voir la notice de l'article provenant de la source Numdam

The Poisson−Nernst−Planck system of equations used to model ionic transport is interpreted as a gradient flow for the Wasserstein distance and a free energy in the space of probability measures with finite second moment. A variational scheme is then set up and is the starting point of the construction of global weak solutions in a unified framework for the cases of both linear and nonlinear diffusion. The proof of the main results relies on the derivation of additional estimates based on the flow interchange technique developed by Matthes et al. in [D. Matthes, R.J. McCann and G. Savaré, Commun. Partial Differ. Equ. 34 (2009) 1352–1397].

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2015043
Classification : 35K65, 35K40, 47J30, 35Q92, 35B33
Keywords: Optimal transport, systems of parabolic PDEs, nonlocal equations

Kinderlehrer, David 1 ; Monsaingeon, Léonard 2 ; Xu, Xiang 3

1 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
2 CAMGSD Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
3 Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA.
@article{COCV_2017__23_1_137_0,
     author = {Kinderlehrer, David and Monsaingeon, L\'eonard and Xu, Xiang},
     title = {A {Wasserstein} gradient flow approach to {Poisson\ensuremath{-}Nernst\ensuremath{-}Planck} equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {137--164},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {1},
     year = {2017},
     doi = {10.1051/cocv/2015043},
     mrnumber = {3601019},
     zbl = {1372.35167},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015043/}
}
TY  - JOUR
AU  - Kinderlehrer, David
AU  - Monsaingeon, Léonard
AU  - Xu, Xiang
TI  - A Wasserstein gradient flow approach to Poisson−Nernst−Planck equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 137
EP  - 164
VL  - 23
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015043/
DO  - 10.1051/cocv/2015043
LA  - en
ID  - COCV_2017__23_1_137_0
ER  - 
%0 Journal Article
%A Kinderlehrer, David
%A Monsaingeon, Léonard
%A Xu, Xiang
%T A Wasserstein gradient flow approach to Poisson−Nernst−Planck equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 137-164
%V 23
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015043/
%R 10.1051/cocv/2015043
%G en
%F COCV_2017__23_1_137_0
Kinderlehrer, David; Monsaingeon, Léonard; Xu, Xiang. A Wasserstein gradient flow approach to Poisson−Nernst−Planck equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 137-164. doi: 10.1051/cocv/2015043

Cité par Sources :