Sensitivity results in stochastic optimal control: A Lagrangian perspective
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 39-70

Voir la notice de l'article provenant de la source Numdam

In this work we provide a first order sensitivity analysis of some parameterized stochastic optimal control problems. The parameters and their perturbations can be given by random processes and affect the state dynamics. We begin by proving a one-to-one correspondence between the adjoint states appearing in a weak form of the stochastic Pontryagin principle and the Lagrange multipliers associated to the state equation when the stochastic optimal control problem is seen as an abstract optimization problem on a suitable Hilbert space. In a first place, we use this result and classical arguments in convex analysis, to study the differentiability of the value function for convex problems submitted to linear perturbations of the dynamics. Then, for the linear quadratic and the mean variance problems, our analysis provides the stability of the optimizers and the C 1 -differentiability of the value function, as well as explicit expressions for the derivatives, even when the data perturbation is not convex in the sense of [R.T. Rockafellar, Conjugate duality and optimization. Society for Industrial and Applied Mathematics, Philadelphia, Pa. (1974).

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2015039
Classification : 93E20, 49Q12, 47J30, 49N10, 91G10
Keywords: Stochastic control, Pontryagin principle, Lagrange multipliers, sensitivity analysis, LQ problems, mean variance portfolio selection problem

Backhoff, J. 1 ; Silva, F. J. 2

1 Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria.
2 Institut de recherche XLIM-DMI, UMR-CNRS 7252 Faculté des sciences et techniques Université de Limoges, 87060 Limoges, France.
@article{COCV_2017__23_1_39_0,
     author = {Backhoff, J. and Silva, F. J.},
     title = {Sensitivity results in stochastic optimal control: {A} {Lagrangian} perspective},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {39--70},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {1},
     year = {2017},
     doi = {10.1051/cocv/2015039},
     mrnumber = {3601015},
     zbl = {1354.93171},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015039/}
}
TY  - JOUR
AU  - Backhoff, J.
AU  - Silva, F. J.
TI  - Sensitivity results in stochastic optimal control: A Lagrangian perspective
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 39
EP  - 70
VL  - 23
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015039/
DO  - 10.1051/cocv/2015039
LA  - en
ID  - COCV_2017__23_1_39_0
ER  - 
%0 Journal Article
%A Backhoff, J.
%A Silva, F. J.
%T Sensitivity results in stochastic optimal control: A Lagrangian perspective
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 39-70
%V 23
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015039/
%R 10.1051/cocv/2015039
%G en
%F COCV_2017__23_1_39_0
Backhoff, J.; Silva, F. J. Sensitivity results in stochastic optimal control: A Lagrangian perspective. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 39-70. doi: 10.1051/cocv/2015039

Cité par Sources :