Time-dependent mean-field games in the superquadratic case
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 562-580

Voir la notice de l'article provenant de la source Numdam

We investigate time-dependent mean-field games with superquadratic Hamiltonians and a power dependence on the measure. Such problems pose substantial mathematical challenges as key techniques used in the subquadratic case, which was studied in a previous publication of the authors, do not extend to the superquadratic setting. The main objective of the present paper is to address these difficulties. Because of the superquadratic structure of the Hamiltonian, Lipschitz estimates for the solutions of the Hamilton−Jacobi equation are obtained here through a novel set of techniques. These explore the parabolic nature of the problem through the nonlinear adjoint method. Well-posedness is proven by combining Lipschitz regularity for the Hamilton−Jacobi equation with polynomial estimates for solutions of the Fokker−Planck equation. Existence of classical solutions is then established under conditions depending only on the growth of the Hamiltonian and the dimension. Our results also add to current understanding of superquadratic Hamilton−Jacobi equations.

Reçu le :
DOI : 10.1051/cocv/2015029
Classification : 35A01, 35A09, 35K10, 35J60
Keywords: Mean-field games, initial terminal value problem, superquadratic Hamiltonians, nonlinear adjoint method

Gomes, Diogo A. 1 ; Pimentel, Edgard 2 ; Sánchez-Morgado, Héctor 3

1 King Abdullah University of Science and Technology (KAUST), CEMSE Division and KAUST SRI, Center for Uncertainty Quantification in Computational Science and Engineering, 23955-6900 Thuwal. Saudi Arabia
2 Universidade Federal do São Carlos, Department of Mathematics, 13560-250 São Carlos-SP, Brazil
3 Instituto de Matemáticas, Universidad Nacional Autónoma de México. DF 04510 México, México.
@article{COCV_2016__22_2_562_0,
     author = {Gomes, Diogo A. and Pimentel, Edgard and S\'anchez-Morgado, H\'ector},
     title = {Time-dependent mean-field games in the superquadratic case},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {562--580},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {2},
     year = {2016},
     doi = {10.1051/cocv/2015029},
     mrnumber = {3491784},
     zbl = {1339.35090},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015029/}
}
TY  - JOUR
AU  - Gomes, Diogo A.
AU  - Pimentel, Edgard
AU  - Sánchez-Morgado, Héctor
TI  - Time-dependent mean-field games in the superquadratic case
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 562
EP  - 580
VL  - 22
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015029/
DO  - 10.1051/cocv/2015029
LA  - en
ID  - COCV_2016__22_2_562_0
ER  - 
%0 Journal Article
%A Gomes, Diogo A.
%A Pimentel, Edgard
%A Sánchez-Morgado, Héctor
%T Time-dependent mean-field games in the superquadratic case
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 562-580
%V 22
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015029/
%R 10.1051/cocv/2015029
%G en
%F COCV_2016__22_2_562_0
Gomes, Diogo A.; Pimentel, Edgard; Sánchez-Morgado, Héctor. Time-dependent mean-field games in the superquadratic case. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 562-580. doi: 10.1051/cocv/2015029

Cité par Sources :