Asymptotic quantization for probability measures on Riemannian manifolds
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 770-785

Voir la notice de l'article provenant de la source Numdam

In this paper we study the quantization problem for probability measures on Riemannian manifolds. Under a suitable assumption on the growth at infinity of the measure we find asymptotic estimates for the quantization error, generalizing the results on R d . Our growth assumption depends on the curvature of the manifold and reduces, in the flat case, to a moment condition. We also build an example showing that our hypothesis is sharp.

Reçu le :
DOI : 10.1051/cocv/2015025
Classification : 49Q20
Keywords: Quantization of measures, Riemannian manifolds

Iacobelli, Mikaela 1, 2

1 University of Rome Sapienza, Department of Mathematics Guido Castelnuovo, Piazzale Aldo Moro 5, 00185 Rome, Italy.
2 Ecole Polytechnique, Centre de mathématiques Laurent Schwartz, 91128 Palaiseau cedex, France.
@article{COCV_2016__22_3_770_0,
     author = {Iacobelli, Mikaela},
     title = {Asymptotic quantization for probability measures on {Riemannian} manifolds},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {770--785},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {3},
     year = {2016},
     doi = {10.1051/cocv/2015025},
     zbl = {1344.49074},
     mrnumber = {3527943},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015025/}
}
TY  - JOUR
AU  - Iacobelli, Mikaela
TI  - Asymptotic quantization for probability measures on Riemannian manifolds
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 770
EP  - 785
VL  - 22
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015025/
DO  - 10.1051/cocv/2015025
LA  - en
ID  - COCV_2016__22_3_770_0
ER  - 
%0 Journal Article
%A Iacobelli, Mikaela
%T Asymptotic quantization for probability measures on Riemannian manifolds
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 770-785
%V 22
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015025/
%R 10.1051/cocv/2015025
%G en
%F COCV_2016__22_3_770_0
Iacobelli, Mikaela. Asymptotic quantization for probability measures on Riemannian manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 770-785. doi: 10.1051/cocv/2015025

Cité par Sources :