Average-distance problem for parameterized curves
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 404-416

Voir la notice de l'article provenant de la source Numdam

We consider approximating a measure by a parameterized curve subject to length penalization. That is for a given finite compactly supported measure μ, with μ d >0 for p1 and λ>0 we consider the functional

E()= d d(x,Γ γ ) p dμ(x)+λLength(γ)

where γ:I d , I is an interval in , Γ γ =γ(I), and d(x,Γ γ ) is the distance of x to Γ γ . The problem is closely related to the average-distance problem, where the admissible class are the connected sets of finite Hausdorff measure 1 , and to (regularized) principal curves studied in statistics. We obtain regularity of minimizers in the form of estimates on the total curvature of the minimizers. We prove that for measures μ supported in two dimensions the minimizing curve is injective if p2 or if μ has bounded density. This establishes that the minimization over parameterized curves is equivalent to minimizing over embedded curves and thus confirms that the problem has a geometric interpretation.

Reçu le :
DOI : 10.1051/cocv/2015011
Classification : 49Q20, 49K10, 49Q10, 35B65
Keywords: Average-distance problem, principal curves, nonlocal variational problems

Lu, Xin Yang 1 ; Slepčev, Dejan 1

1 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
@article{COCV_2016__22_2_404_0,
     author = {Lu, Xin Yang and Slep\v{c}ev, Dejan},
     title = {Average-distance problem for parameterized curves},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {404--416},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {2},
     year = {2016},
     doi = {10.1051/cocv/2015011},
     mrnumber = {3491776},
     zbl = {1338.49094},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015011/}
}
TY  - JOUR
AU  - Lu, Xin Yang
AU  - Slepčev, Dejan
TI  - Average-distance problem for parameterized curves
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 404
EP  - 416
VL  - 22
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015011/
DO  - 10.1051/cocv/2015011
LA  - en
ID  - COCV_2016__22_2_404_0
ER  - 
%0 Journal Article
%A Lu, Xin Yang
%A Slepčev, Dejan
%T Average-distance problem for parameterized curves
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 404-416
%V 22
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015011/
%R 10.1051/cocv/2015011
%G en
%F COCV_2016__22_2_404_0
Lu, Xin Yang; Slepčev, Dejan. Average-distance problem for parameterized curves. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 404-416. doi: 10.1051/cocv/2015011

Cité par Sources :