Voir la notice de l'article provenant de la source Numdam
We characterize Young measures generated by gradients of bi-Lipschitz orientation-preserving maps in the plane. This question is motivated by variational problems in nonlinear elasticity where the orientation preservation and injectivity of the admissible deformations are key requirements. These results enable us to derive new weak lower semicontinuity results for integral functionals depending on gradients. As an application, we show the existence of a minimizer for an integral functional with nonpolyconvex energy density among bi-Lipschitz homeomorphisms.
Benešová, Barbora 1, 2 ; Kružík, Martin 1, 2, 3
@article{COCV_2016__22_1_267_0, author = {Bene\v{s}ov\'a, Barbora and Kru\v{z}{\'\i}k, Martin}, title = {Characterization of gradient young measures generated by homeomorphisms in the plane}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {267--288}, publisher = {EDP-Sciences}, volume = {22}, number = {1}, year = {2016}, doi = {10.1051/cocv/2015003}, zbl = {1335.49023}, mrnumber = {3489385}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015003/} }
TY - JOUR AU - Benešová, Barbora AU - Kružík, Martin TI - Characterization of gradient young measures generated by homeomorphisms in the plane JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 267 EP - 288 VL - 22 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015003/ DO - 10.1051/cocv/2015003 LA - en ID - COCV_2016__22_1_267_0 ER -
%0 Journal Article %A Benešová, Barbora %A Kružík, Martin %T Characterization of gradient young measures generated by homeomorphisms in the plane %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 267-288 %V 22 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015003/ %R 10.1051/cocv/2015003 %G en %F COCV_2016__22_1_267_0
Benešová, Barbora; Kružík, Martin. Characterization of gradient young measures generated by homeomorphisms in the plane. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 267-288. doi: 10.1051/cocv/2015003
Cité par Sources :