Optimal stochastic control with recursive cost functionals of stochastic differential systems reflected in a domain
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 1150-1177

Voir la notice de l'article provenant de la source Numdam

The paper is concerned with optimal control of a stochastic differential system reflected in a domain. The cost functional is implicitly defined via a generalized backward stochastic differential equation developed by Pardoux and Zhang [Probab. Theory Relat. Fields 110 (1998) 535–558]. The value function is shown to be the unique viscosity solution to the associated Hamilton–Jacobi–Bellman equation, which is a fully nonlinear parabolic partial differential equation with a nonlinear Neumann boundary condition. The proof requires new estimates for the reflected stochastic differential system.

Reçu le :
DOI : 10.1051/cocv/2014062
Classification : 60H99, 60H30, 35J60, 93E05, 90C39
Keywords: Hamilton–Jacobi–Bellman equation, nonlinear Neumann boundary, value function, backward stochastic differential equations, dynamic programming principle, viscosity solution

Li, Juan 1 ; Tang, Shanjian 2

1 School of Mathematics and Statistics, Shandong University, Weihai, Weihai 264200, P.R. China
2 Institute of Mathematics and Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, Shanghai 200433, P.R. China
@article{COCV_2015__21_4_1150_0,
     author = {Li, Juan and Tang, Shanjian},
     title = {Optimal stochastic control with recursive cost functionals of stochastic differential systems reflected in a domain},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1150--1177},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {4},
     year = {2015},
     doi = {10.1051/cocv/2014062},
     mrnumber = {3395759},
     zbl = {1341.49020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014062/}
}
TY  - JOUR
AU  - Li, Juan
AU  - Tang, Shanjian
TI  - Optimal stochastic control with recursive cost functionals of stochastic differential systems reflected in a domain
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 1150
EP  - 1177
VL  - 21
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014062/
DO  - 10.1051/cocv/2014062
LA  - en
ID  - COCV_2015__21_4_1150_0
ER  - 
%0 Journal Article
%A Li, Juan
%A Tang, Shanjian
%T Optimal stochastic control with recursive cost functionals of stochastic differential systems reflected in a domain
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 1150-1177
%V 21
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014062/
%R 10.1051/cocv/2014062
%G en
%F COCV_2015__21_4_1150_0
Li, Juan; Tang, Shanjian. Optimal stochastic control with recursive cost functionals of stochastic differential systems reflected in a domain. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 1150-1177. doi: 10.1051/cocv/2014062

Cité par Sources :