Existence of solutions to bilinear problems with a closed-loop control
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 989-1001

Voir la notice de l'article provenant de la source Numdam

Here we prove the existence of solutions to nonlinear differential inclusion problems with closed-loop control +A(z)=B(u,z)+f,uU(t,z),z(0)=z 0 where the operator B is bilinear with respect to the control u and the state z in reflexive, separable Banach spaces denoted Y and V, respectively. The operator A is nonlinear in V, and given a positive real number T, the set-valued map U is defined in [0,T]×V. Without making any assumptions about the convexity of U, its values are taken to be non-empty closed, decomposable subsets of Y.

Reçu le :
DOI : 10.1051/cocv/2014055
Classification : 34A60, 35A01, 35G20, 93B52
Keywords: Nonlinear infinite system, differential inclusion, bilinear control, closed-loop control, feedback law, a priori estimates, Willett and Wong’s lemma

Clérin, Jean-Marc 1

1 Université Paris-Sorbonne (Paris IV), 10 rue Molitor, 75016 Paris, France.
@article{COCV_2015__21_4_989_0,
     author = {Cl\'erin, Jean-Marc},
     title = {Existence of solutions to bilinear problems with a closed-loop control},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {989--1001},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {4},
     year = {2015},
     doi = {10.1051/cocv/2014055},
     mrnumber = {3395752},
     zbl = {1326.93062},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014055/}
}
TY  - JOUR
AU  - Clérin, Jean-Marc
TI  - Existence of solutions to bilinear problems with a closed-loop control
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 989
EP  - 1001
VL  - 21
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014055/
DO  - 10.1051/cocv/2014055
LA  - en
ID  - COCV_2015__21_4_989_0
ER  - 
%0 Journal Article
%A Clérin, Jean-Marc
%T Existence of solutions to bilinear problems with a closed-loop control
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 989-1001
%V 21
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014055/
%R 10.1051/cocv/2014055
%G en
%F COCV_2015__21_4_989_0
Clérin, Jean-Marc. Existence of solutions to bilinear problems with a closed-loop control. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 989-1001. doi: 10.1051/cocv/2014055

Cité par Sources :