Voir la notice de l'article provenant de la source Numdam
In this work, we study both minimal and maximal blowup time controls for some ordinary differential equations. The existence and Pontryagin’s maximum principle for these problems are derived. As a key preliminary to prove our main results, due to certain monotonicity of the controlled systems, “the initial period optimality” for an optimal triplet is built up. This property reduces our blowup time optimal control problems (where the target set is outside of the state space) to the classical ones (where the target sets are in state spaces).
Lou, Hongwei 1 ; Wang, Weihan 1
@article{COCV_2015__21_3_815_0, author = {Lou, Hongwei and Wang, Weihan}, title = {Optimal blowup time for controlled ordinary differential equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {815--834}, publisher = {EDP-Sciences}, volume = {21}, number = {3}, year = {2015}, doi = {10.1051/cocv/2014051}, mrnumber = {3358631}, zbl = {1318.49004}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014051/} }
TY - JOUR AU - Lou, Hongwei AU - Wang, Weihan TI - Optimal blowup time for controlled ordinary differential equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 815 EP - 834 VL - 21 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014051/ DO - 10.1051/cocv/2014051 LA - en ID - COCV_2015__21_3_815_0 ER -
%0 Journal Article %A Lou, Hongwei %A Wang, Weihan %T Optimal blowup time for controlled ordinary differential equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 815-834 %V 21 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014051/ %R 10.1051/cocv/2014051 %G en %F COCV_2015__21_3_815_0
Lou, Hongwei; Wang, Weihan. Optimal blowup time for controlled ordinary differential equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 815-834. doi : 10.1051/cocv/2014051. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014051/
Blowup in diffusion equations: a survey. J. Comput. Appl. Math. 97 (1998) 3–22. | MR | Zbl | DOI
and ,Optimal control of the blowup time. SIAM J. Control Optim. 34 (1996) 102–123. | MR | Zbl | DOI
and ,Boundedness and blow up for a semilinear reaction diffusion system. J. Differ. Equ. 89 (1991) 176–202. | MR | Zbl | DOI
and ,On certain questions in the theory of optimal control. SIAM J. Control Ser. A 1 (1962) 76–84. | MR | Zbl
,Blow-up theorems for nonlinear wave-equations. Mathematische Zeitschrift 132 (1973) 183–203. | MR | Zbl | DOI
,Blowup rate for heat equation in Lipschitz domains with nonlinear heat source terms on the boundary. J. Math. Anal. Appl. 269 (2002) 28–49. | MR | Zbl | DOI
and ,Blowup time optimal control for ordinary differential equations. SIAM J. Control Optim. 49 (2011) 73–105. | MR | Zbl | DOI
and ,Time optimal control problems for some non-smooth systems. Math. Control Relat. Fields 4 (2014) 289–314. | MR | Zbl | DOI
, and ,Finite-time blowup for wave equations with a potential. SIAM J. Math. Anal. 36 (2005) 1426–1433. | MR | Zbl | DOI
and ,K. Yosida, Functional analysis, 6th ed. Springer-Verlag, Berlin (1980). | MR
Rate estimates of gradient blowup for a heat equation with exponential nonlinearity. Nonlin. Anal. Theory Methods Appl. 72 (2010) 4594–4601. | MR | Zbl | DOI
and ,Cité par Sources :