Robust optimal shape design for an elliptic PDE with uncertainty in its input data
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 901-923

Voir la notice de l'article provenant de la source Numdam

We consider a shape optimization problem for an elliptic partial differential equation with uncertainty in its input data. The design variable enters the lower-order term of the state equation and is modeled through the characteristic function of a measurable subset of the spatial domain. As usual, a measure constraint is imposed on the design variable. In order to compute a robust optimal shape, the objective function involves a weighted sum of both the mean and the variance of the compliance. Since the optimization problem is not convex, a full relaxation of it is first obtained. The relaxed problem is then solved numerically by using a gradient-based optimization algorithm. To this end, the adjoint method is used to compute the continuous gradient of the cost function. Since the variance enters the cost function, the underlying adjoint equation is non-local in the probabilistic space. Both the direct and adjoint equations are solved numerically by using a sparse grid stochastic collocation method. Three numerical experiments in 2D illustrate the theoretical results and show the computational issues which arise when uncertainty is quantified through random fields.

Reçu le :
DOI : 10.1051/cocv/2014049
Classification : 35J20, 49J20, 49M20, 65K10
Keywords: Robust shape optimization, average approach, stochastic elliptic partial differential equation, relaxation method, Gaussian random fields, elastic membrane

Martínez-Frutos, Jesús 1 ; Kessler, Mathieu 2 ; Periago, Francisco 2

1 Departamento de Estructuras y Construcción, Universidad Politécnica de Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena (Murcia), Spain
2 Departamento de Matemática Aplicada y Estadística. UPCT  
@article{COCV_2015__21_4_901_0,
     author = {Mart{\'\i}nez-Frutos, Jes\'us and Kessler, Mathieu and Periago, Francisco},
     title = {Robust optimal shape design for an elliptic {PDE} with uncertainty in its input data},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {901--923},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {4},
     year = {2015},
     doi = {10.1051/cocv/2014049},
     zbl = {1323.49029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014049/}
}
TY  - JOUR
AU  - Martínez-Frutos, Jesús
AU  - Kessler, Mathieu
AU  - Periago, Francisco
TI  - Robust optimal shape design for an elliptic PDE with uncertainty in its input data
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 901
EP  - 923
VL  - 21
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014049/
DO  - 10.1051/cocv/2014049
LA  - en
ID  - COCV_2015__21_4_901_0
ER  - 
%0 Journal Article
%A Martínez-Frutos, Jesús
%A Kessler, Mathieu
%A Periago, Francisco
%T Robust optimal shape design for an elliptic PDE with uncertainty in its input data
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 901-923
%V 21
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014049/
%R 10.1051/cocv/2014049
%G en
%F COCV_2015__21_4_901_0
Martínez-Frutos, Jesús; Kessler, Mathieu; Periago, Francisco. Robust optimal shape design for an elliptic PDE with uncertainty in its input data. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 901-923. doi: 10.1051/cocv/2014049

Cité par Sources :