Voir la notice de l'article provenant de la source Numdam
We consider a first-order system of mean field games with local coupling in the deterministic limit. Under general structure conditions on the Hamiltonian and coupling, we prove existence and uniqueness of the weak solution, characterizing this solution as the minimizer of some optimal control of Hamilton−Jacobi and continuity equations. We also prove that this solution converges in the long time average to the solution of the associated ergodic problem.
Cardaliaguet, Pierre 1 ; Graber, P. Jameson 2
@article{COCV_2015__21_3_690_0, author = {Cardaliaguet, Pierre and Graber, P. Jameson}, title = {Mean field games systems of first order}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {690--722}, publisher = {EDP-Sciences}, volume = {21}, number = {3}, year = {2015}, doi = {10.1051/cocv/2014044}, zbl = {1319.35273}, mrnumber = {3358627}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014044/} }
TY - JOUR AU - Cardaliaguet, Pierre AU - Graber, P. Jameson TI - Mean field games systems of first order JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 690 EP - 722 VL - 21 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014044/ DO - 10.1051/cocv/2014044 LA - en ID - COCV_2015__21_3_690_0 ER -
%0 Journal Article %A Cardaliaguet, Pierre %A Graber, P. Jameson %T Mean field games systems of first order %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 690-722 %V 21 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014044/ %R 10.1051/cocv/2014044 %G en %F COCV_2015__21_3_690_0
Cardaliaguet, Pierre; Graber, P. Jameson. Mean field games systems of first order. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 690-722. doi: 10.1051/cocv/2014044
Cité par Sources :