Mean field games systems of first order
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 690-722

Voir la notice de l'article provenant de la source Numdam

We consider a first-order system of mean field games with local coupling in the deterministic limit. Under general structure conditions on the Hamiltonian and coupling, we prove existence and uniqueness of the weak solution, characterizing this solution as the minimizer of some optimal control of Hamilton−Jacobi and continuity equations. We also prove that this solution converges in the long time average to the solution of the associated ergodic problem.

DOI : 10.1051/cocv/2014044
Classification : 35Q91, 49K20
Keywords: Mean field games, Hamilton−Jacobi equations, optimal control, nonlinear PDE, transport theory, long time average

Cardaliaguet, Pierre 1 ; Graber, P. Jameson 2

1 Ceremade, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France
2 Commands team (ENSTA ParisTech, INRIA Saclay), 828, Boulevard des Maréchaux, 91762 Palaiseau cedex, France
@article{COCV_2015__21_3_690_0,
     author = {Cardaliaguet, Pierre and Graber, P. Jameson},
     title = {Mean field games systems of first order},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {690--722},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {3},
     year = {2015},
     doi = {10.1051/cocv/2014044},
     zbl = {1319.35273},
     mrnumber = {3358627},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014044/}
}
TY  - JOUR
AU  - Cardaliaguet, Pierre
AU  - Graber, P. Jameson
TI  - Mean field games systems of first order
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 690
EP  - 722
VL  - 21
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014044/
DO  - 10.1051/cocv/2014044
LA  - en
ID  - COCV_2015__21_3_690_0
ER  - 
%0 Journal Article
%A Cardaliaguet, Pierre
%A Graber, P. Jameson
%T Mean field games systems of first order
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 690-722
%V 21
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014044/
%R 10.1051/cocv/2014044
%G en
%F COCV_2015__21_3_690_0
Cardaliaguet, Pierre; Graber, P. Jameson. Mean field games systems of first order. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 690-722. doi: 10.1051/cocv/2014044

Cité par Sources :