Voir la notice de l'article provenant de la source Numdam
We prove that in a class of non-equiregular sub-Riemannian manifolds corners are not length minimizing. This extends the results of [G.P. Leonardi and R. Monti, Geom. Funct. Anal. 18 (2008) 552–582]. As an application of our main result we complete and simplify the analysis in [R. Monti, Ann. Mat. Pura Appl. (2013)], showing that in a -dimensional sub-Riemannian structure suggested by Agrachev and Gauthier all length-minimizing curves are smooth.
DOI : 10.1051/cocv/2014041
Keywords: Sub-Riemannian geometry, regularity of geodesics, corners
Le Donne, Enrico 1 ; Leonardi, Gian Paolo 2 ; Monti, Roberto 3 ; Vittone, Davide 3
@article{COCV_2015__21_3_625_0,
author = {Le Donne, Enrico and Leonardi, Gian Paolo and Monti, Roberto and Vittone, Davide},
title = {Corners in non-equiregular {sub-Riemannian} manifolds},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {625--634},
publisher = {EDP-Sciences},
volume = {21},
number = {3},
year = {2015},
doi = {10.1051/cocv/2014041},
mrnumber = {3358624},
zbl = {1333.53045},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014041/}
}
TY - JOUR AU - Le Donne, Enrico AU - Leonardi, Gian Paolo AU - Monti, Roberto AU - Vittone, Davide TI - Corners in non-equiregular sub-Riemannian manifolds JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 625 EP - 634 VL - 21 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014041/ DO - 10.1051/cocv/2014041 LA - en ID - COCV_2015__21_3_625_0 ER -
%0 Journal Article %A Le Donne, Enrico %A Leonardi, Gian Paolo %A Monti, Roberto %A Vittone, Davide %T Corners in non-equiregular sub-Riemannian manifolds %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 625-634 %V 21 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014041/ %R 10.1051/cocv/2014041 %G en %F COCV_2015__21_3_625_0
Le Donne, Enrico; Leonardi, Gian Paolo; Monti, Roberto; Vittone, Davide. Corners in non-equiregular sub-Riemannian manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 625-634. doi: 10.1051/cocv/2014041
Cité par Sources :
