Voir la notice de l'article provenant de la source Numdam
We consider the Landau−de Gennes variational problem on a bounded, two dimensional domain, subject to Dirichlet smooth boundary conditions. We prove that minimizers are maximally biaxial near the singularities, that is, their biaxiality parameter reaches the maximum value . Moreover, we discuss the convergence of minimizers in the vanishing elastic constant limit. Our asymptotic analysis is performed in a general setting, which recovers the Landau−de Gennes problem as a specific case.
Canevari, Giacomo 1
@article{COCV_2015__21_1_101_0, author = {Canevari, Giacomo}, title = {Biaxiality in the asymptotic analysis of a {2D} {Landau\ensuremath{-}de} {Gennes} model for liquid crystals}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {101--137}, publisher = {EDP-Sciences}, volume = {21}, number = {1}, year = {2015}, doi = {10.1051/cocv/2014025}, mrnumber = {3348417}, zbl = {1311.35209}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014025/} }
TY - JOUR AU - Canevari, Giacomo TI - Biaxiality in the asymptotic analysis of a 2D Landau−de Gennes model for liquid crystals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 101 EP - 137 VL - 21 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014025/ DO - 10.1051/cocv/2014025 LA - en ID - COCV_2015__21_1_101_0 ER -
%0 Journal Article %A Canevari, Giacomo %T Biaxiality in the asymptotic analysis of a 2D Landau−de Gennes model for liquid crystals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 101-137 %V 21 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014025/ %R 10.1051/cocv/2014025 %G en %F COCV_2015__21_1_101_0
Canevari, Giacomo. Biaxiality in the asymptotic analysis of a 2D Landau−de Gennes model for liquid crystals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 101-137. doi: 10.1051/cocv/2014025
Cité par Sources :