Frank energy for nematic elastomers: a nonlinear model
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 372-377
Voir la notice de l'article provenant de la source Numdam
We discuss the well-posedness of a new nonlinear model for nematic elastomers. The main novelty in our work is that the Frank energy penalizes spatial variations of the nematic director in the deformed, rather than in the reference configuration, as it is natural in the case of large deformations.
Reçu le :
DOI : 10.1051/cocv/2014022
DOI : 10.1051/cocv/2014022
Classification :
74B20, 74G65
Keywords: Nematic elastomers, polyconvexity, invertibility
Keywords: Nematic elastomers, polyconvexity, invertibility
Affiliations des auteurs :
Barchiesi, Marco 1 ; DeSimone, Antonio 2
@article{COCV_2015__21_2_372_0,
author = {Barchiesi, Marco and DeSimone, Antonio},
title = {Frank energy for nematic elastomers: a nonlinear model},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {372--377},
publisher = {EDP-Sciences},
volume = {21},
number = {2},
year = {2015},
doi = {10.1051/cocv/2014022},
mrnumber = {3348403},
zbl = {1311.74020},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014022/}
}
TY - JOUR AU - Barchiesi, Marco AU - DeSimone, Antonio TI - Frank energy for nematic elastomers: a nonlinear model JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 372 EP - 377 VL - 21 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014022/ DO - 10.1051/cocv/2014022 LA - en ID - COCV_2015__21_2_372_0 ER -
%0 Journal Article %A Barchiesi, Marco %A DeSimone, Antonio %T Frank energy for nematic elastomers: a nonlinear model %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 372-377 %V 21 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014022/ %R 10.1051/cocv/2014022 %G en %F COCV_2015__21_2_372_0
Barchiesi, Marco; DeSimone, Antonio. Frank energy for nematic elastomers: a nonlinear model. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 372-377. doi: 10.1051/cocv/2014022
Cité par Sources :