Unconstrained Variational Principles for Linear Elliptic Eigenproblems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 165-189

Voir la notice de l'article provenant de la source Numdam

This paper introduces and studies some unconstrained variational principles for finding eigenvalues, and associated eigenvectors, of a pair of bilinear forms (a,m) on a Hilbert space V. The functionals involve a parameter μ and are smooth with well-defined second variations. Their non-zero critical points are eigenvectors of (a,m) with associated eigenvalues given by specific formulae. There is an associated Morse-index theory that characterizes the eigenvector as being associated with the jth eigenvalue. The requirements imposed on the forms (a,m) are appropriate for studying elliptic eigenproblems in Hilbert−Sobolev spaces, including problems with indefinite weights. The general results are illustrated by analyses of specific eigenproblems for second order elliptic Robin, Steklov and general eigenproblems.

Reçu le :
DOI : 10.1051/cocv/2014021
Classification : 35P15, 49R05, 58E05
Keywords: Robin eigenproblems, Steklov eigenproblems, Morse indices, unconstrained variational problems

Auchmuty, G. 1 ; Rivas, M.A. 1

1 Department of Mathematics, University of Houston, Houston, Tx 77204-3008, USA
@article{COCV_2015__21_1_165_0,
     author = {Auchmuty, G. and Rivas, M.A.},
     title = {Unconstrained {Variational} {Principles} for {Linear} {Elliptic} {Eigenproblems}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {165--189},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {1},
     year = {2015},
     doi = {10.1051/cocv/2014021},
     mrnumber = {3348419},
     zbl = {1327.35267},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014021/}
}
TY  - JOUR
AU  - Auchmuty, G.
AU  - Rivas, M.A.
TI  - Unconstrained Variational Principles for Linear Elliptic Eigenproblems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 165
EP  - 189
VL  - 21
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014021/
DO  - 10.1051/cocv/2014021
LA  - en
ID  - COCV_2015__21_1_165_0
ER  - 
%0 Journal Article
%A Auchmuty, G.
%A Rivas, M.A.
%T Unconstrained Variational Principles for Linear Elliptic Eigenproblems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 165-189
%V 21
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014021/
%R 10.1051/cocv/2014021
%G en
%F COCV_2015__21_1_165_0
Auchmuty, G.; Rivas, M.A. Unconstrained Variational Principles for Linear Elliptic Eigenproblems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 165-189. doi: 10.1051/cocv/2014021

Cité par Sources :