Voir la notice de l'article provenant de la source Numdam
This paper introduces and studies some unconstrained variational principles for finding eigenvalues, and associated eigenvectors, of a pair of bilinear forms on a Hilbert space . The functionals involve a parameter and are smooth with well-defined second variations. Their non-zero critical points are eigenvectors of with associated eigenvalues given by specific formulae. There is an associated Morse-index theory that characterizes the eigenvector as being associated with the th eigenvalue. The requirements imposed on the forms are appropriate for studying elliptic eigenproblems in Hilbert−Sobolev spaces, including problems with indefinite weights. The general results are illustrated by analyses of specific eigenproblems for second order elliptic Robin, Steklov and general eigenproblems.
Auchmuty, G. 1 ; Rivas, M.A. 1
@article{COCV_2015__21_1_165_0, author = {Auchmuty, G. and Rivas, M.A.}, title = {Unconstrained {Variational} {Principles} for {Linear} {Elliptic} {Eigenproblems}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {165--189}, publisher = {EDP-Sciences}, volume = {21}, number = {1}, year = {2015}, doi = {10.1051/cocv/2014021}, mrnumber = {3348419}, zbl = {1327.35267}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014021/} }
TY - JOUR AU - Auchmuty, G. AU - Rivas, M.A. TI - Unconstrained Variational Principles for Linear Elliptic Eigenproblems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 165 EP - 189 VL - 21 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014021/ DO - 10.1051/cocv/2014021 LA - en ID - COCV_2015__21_1_165_0 ER -
%0 Journal Article %A Auchmuty, G. %A Rivas, M.A. %T Unconstrained Variational Principles for Linear Elliptic Eigenproblems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 165-189 %V 21 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014021/ %R 10.1051/cocv/2014021 %G en %F COCV_2015__21_1_165_0
Auchmuty, G.; Rivas, M.A. Unconstrained Variational Principles for Linear Elliptic Eigenproblems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 165-189. doi: 10.1051/cocv/2014021
Cité par Sources :