On the Faber–Krahn inequality for the Dirichlet p-Laplacian
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 60-72

Voir la notice de l'article provenant de la source Numdam

A famous conjecture made by Lord Rayleigh is the following: “The first eigenvalue of the Laplacian on an open domain of given measure with Dirichlet boundary conditions is minimum when the domain is a ball and only when it is a ball”. This conjecture was proved simultaneously and independently by Faber [G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169–172] and Krahn [E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math. Ann. 94 (1924) 97–100.]. We shall deal with the p-Laplacian version of this theorem.

Reçu le :
DOI : 10.1051/cocv/2014017
Classification : 35B06, 35B51, 35J92, 35P30, 49Q20
Keywords: Symmetry, moving plane method, comparison principles, boundary point lemma

Chorwadwala, Anisa M.H. 1 ; Mahadevan, Rajesh 2 ; Toledo, Francisco 2

1 Indian Institute of Science Education and Research, Pune, India.
2 Departamento de Matemática, Univ. de Concepción, Concepción, Chile.
@article{COCV_2015__21_1_60_0,
     author = {Chorwadwala, Anisa M.H. and Mahadevan, Rajesh and Toledo, Francisco},
     title = {On the {Faber{\textendash}Krahn} inequality for the {Dirichlet} $p${-Laplacian}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {60--72},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {1},
     year = {2015},
     doi = {10.1051/cocv/2014017},
     zbl = {1319.35145},
     mrnumber = {3348415},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014017/}
}
TY  - JOUR
AU  - Chorwadwala, Anisa M.H.
AU  - Mahadevan, Rajesh
AU  - Toledo, Francisco
TI  - On the Faber–Krahn inequality for the Dirichlet $p$-Laplacian
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 60
EP  - 72
VL  - 21
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014017/
DO  - 10.1051/cocv/2014017
LA  - en
ID  - COCV_2015__21_1_60_0
ER  - 
%0 Journal Article
%A Chorwadwala, Anisa M.H.
%A Mahadevan, Rajesh
%A Toledo, Francisco
%T On the Faber–Krahn inequality for the Dirichlet $p$-Laplacian
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 60-72
%V 21
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014017/
%R 10.1051/cocv/2014017
%G en
%F COCV_2015__21_1_60_0
Chorwadwala, Anisa M.H.; Mahadevan, Rajesh; Toledo, Francisco. On the Faber–Krahn inequality for the Dirichlet $p$-Laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 60-72. doi: 10.1051/cocv/2014017

Cité par Sources :