Identification of a wave equation generated by a string
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 1203-1213

Voir la notice de l'article provenant de la source Numdam

We show that we can reconstruct two coefficients of a wave equation by a single boundary measurement of the solution. The identification and reconstruction are based on Krein's inverse spectral theory for the first coefficient and on the Gelfand-Levitan theory for the second. To do so we use spectral estimation to extract the first spectrum and then interpolation to map the second one. The control of the solution is also studied.

DOI : 10.1051/cocv/2014012
Classification : 34A55, 34K29, 34L05
Keywords: inverse spectral methods, Krein string, Gelfand-levitan theory
@article{COCV_2014__20_4_1203_0,
     author = {Boumenir, Amin},
     title = {Identification of a wave equation generated by a string},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1203--1213},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {4},
     year = {2014},
     doi = {10.1051/cocv/2014012},
     mrnumber = {3264239},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014012/}
}
TY  - JOUR
AU  - Boumenir, Amin
TI  - Identification of a wave equation generated by a string
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 1203
EP  - 1213
VL  - 20
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014012/
DO  - 10.1051/cocv/2014012
LA  - en
ID  - COCV_2014__20_4_1203_0
ER  - 
%0 Journal Article
%A Boumenir, Amin
%T Identification of a wave equation generated by a string
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 1203-1213
%V 20
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014012/
%R 10.1051/cocv/2014012
%G en
%F COCV_2014__20_4_1203_0
Boumenir, Amin. Identification of a wave equation generated by a string. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 1203-1213. doi: 10.1051/cocv/2014012

Cité par Sources :