Relaxation in BV of integrals with superlinear growth
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 1078-1122

Voir la notice de l'article provenant de la source Numdam

We study properties of the functional

loc (u,Ω):=inf (u j ) lim inf j Ω f (u j ) d x (u j )W loc 1,r Ω, N u j *uinBVΩ, N ,
where u B V ( Ω ; N ) , and f : N × n is continuous and satisfies 0 f ( ξ ) L ( 1 + | ξ | r ) . For r [ 1 , 2 ) , assuming f has linear growth in certain rank-one directions, we combine a result of [A. Braides and A. Coscia, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 737-756] with a new technique involving mollification to prove an upper bound for loc . Then, for r [ 1 , n n - 1 ) , we prove that loc satisfies the lower bound
loc (u,Ω) Ω f(u(x))dx+ Ω f D s u |D s u||D s u|,
provided f is quasiconvex, and the recession function f (defined as f ( ξ ) : = lim ¯ t f ( t ξ ) / t is assumed to be finite in certain rank-one directions. The proof of this result involves adapting work by [Kristensen, Calc. Var. Partial Differ. Eqs. 7 (1998) 249-261], and [Ambrosio and Dal Maso, J. Funct. Anal. 109 (1992) 76-97], and applying a non-standard blow-up technique that exploits fine properties of BV maps. It also makes use of the fact that loc has a measure representation, which is proved in the appendix using a method of [Fonseca and Malý, Annal. Inst. Henri Poincaré Anal. Non Linéaire 14 (1997) 309-338].

DOI : 10.1051/cocv/2014008
Classification : 49J45, 26B30
Keywords: quasiconvexity, lower semicontinuity, relaxation, BV
@article{COCV_2014__20_4_1078_0,
     author = {Soneji, Parth},
     title = {Relaxation in {BV} of integrals with superlinear growth},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1078--1122},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {4},
     year = {2014},
     doi = {10.1051/cocv/2014008},
     mrnumber = {3264235},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014008/}
}
TY  - JOUR
AU  - Soneji, Parth
TI  - Relaxation in BV of integrals with superlinear growth
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 1078
EP  - 1122
VL  - 20
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014008/
DO  - 10.1051/cocv/2014008
LA  - en
ID  - COCV_2014__20_4_1078_0
ER  - 
%0 Journal Article
%A Soneji, Parth
%T Relaxation in BV of integrals with superlinear growth
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 1078-1122
%V 20
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014008/
%R 10.1051/cocv/2014008
%G en
%F COCV_2014__20_4_1078_0
Soneji, Parth. Relaxation in BV of integrals with superlinear growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 1078-1122. doi: 10.1051/cocv/2014008

Cité par Sources :