Voir la notice de l'article provenant de la source Numdam
We prove Hölder regularity of the gradient, up to the boundary for solutions of some fully-nonlinear, degenerate elliptic equations, with degeneracy coming from the gradient.
@article{COCV_2014__20_4_1009_0, author = {Birindelli, I. and Demengel, F.}, title = {$\mathcal {C}^{1,\beta }$ regularity for {Dirichlet} problems associated to fully nonlinear degenerate elliptic equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1009--1024}, publisher = {EDP-Sciences}, volume = {20}, number = {4}, year = {2014}, doi = {10.1051/cocv/2014005}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014005/} }
TY - JOUR AU - Birindelli, I. AU - Demengel, F. TI - $\mathcal {C}^{1,\beta }$ regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 1009 EP - 1024 VL - 20 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014005/ DO - 10.1051/cocv/2014005 LA - en ID - COCV_2014__20_4_1009_0 ER -
%0 Journal Article %A Birindelli, I. %A Demengel, F. %T $\mathcal {C}^{1,\beta }$ regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 1009-1024 %V 20 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014005/ %R 10.1051/cocv/2014005 %G en %F COCV_2014__20_4_1009_0
Birindelli, I.; Demengel, F. $\mathcal {C}^{1,\beta }$ regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 1009-1024. doi: 10.1051/cocv/2014005
Cité par Sources :