Curve cuspless reconstruction via sub-riemannian geometry
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 3, pp. 748-770

Voir la notice de l'article provenant de la source Numdam

We consider the problem of minimizing 0 ξ 2 +K 2 (s)ds ∫ 0 ℓ ξ 2 + K 2 ( s )   d s for a planar curve having fixed initial and final positions and directions. The total length is free. Here s is the arclength parameter, K(s) is the curvature of the curve and ξ > 0 is a fixed constant. This problem comes from a model of geometry of vision due to Petitot, Citti and Sarti. We study existence of local and global minimizers for this problem. We prove that if for a certain choice of boundary conditions there is no global minimizer, then there is neither a local minimizer nor a geodesic. We finally give properties of the set of boundary conditions for which there exists a solution to the problem.

DOI : 10.1051/cocv/2013082
Classification : 94A08, 49J15
Keywords: curve reconstruction, generalized pontryagin maximum principle
@article{COCV_2014__20_3_748_0,
     author = {Boscain, Ugo and Duits, Remco and Rossi, Francesco and Sachkov, Yuri},
     title = {Curve cuspless reconstruction \protect\emph{via }sub-riemannian geometry},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {748--770},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {3},
     year = {2014},
     doi = {10.1051/cocv/2013082},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013082/}
}
TY  - JOUR
AU  - Boscain, Ugo
AU  - Duits, Remco
AU  - Rossi, Francesco
AU  - Sachkov, Yuri
TI  - Curve cuspless reconstruction via sub-riemannian geometry
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 748
EP  - 770
VL  - 20
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013082/
DO  - 10.1051/cocv/2013082
LA  - en
ID  - COCV_2014__20_3_748_0
ER  - 
%0 Journal Article
%A Boscain, Ugo
%A Duits, Remco
%A Rossi, Francesco
%A Sachkov, Yuri
%T Curve cuspless reconstruction via sub-riemannian geometry
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 748-770
%V 20
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013082/
%R 10.1051/cocv/2013082
%G en
%F COCV_2014__20_3_748_0
Boscain, Ugo; Duits, Remco; Rossi, Francesco; Sachkov, Yuri. Curve cuspless reconstruction via sub-riemannian geometry. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 3, pp. 748-770. doi: 10.1051/cocv/2013082

Cité par Sources :