Voir la notice de l'article provenant de la source Numdam
A deterministic affine-quadratic optimal control problem is considered. Due to the nature of the problem, optimal controls exist under some very mild conditions. Further, it is shown that under some assumptions, the optimal control is unique which leads to the differentiability of the value function. Therefore, the value function satisfies the corresponding Hamilton-Jacobi-Bellman equation in the classical sense, and the optimal control admits a state feedback representation. Under some additional conditions, it is shown that the value function is actually twice differentiable and the so-called quasi-Riccati equation is derived, whose solution can be used to construct the state feedback representation for the optimal control.
@article{COCV_2014__20_3_633_0, author = {Wang, Yuanchang and Yong, Jiongmin}, title = {A deterministic affine-quadratic optimal control problem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {633--661}, publisher = {EDP-Sciences}, volume = {20}, number = {3}, year = {2014}, doi = {10.1051/cocv/2013078}, mrnumber = {3270127}, zbl = {1293.49004}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013078/} }
TY - JOUR AU - Wang, Yuanchang AU - Yong, Jiongmin TI - A deterministic affine-quadratic optimal control problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 633 EP - 661 VL - 20 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013078/ DO - 10.1051/cocv/2013078 LA - en ID - COCV_2014__20_3_633_0 ER -
%0 Journal Article %A Wang, Yuanchang %A Yong, Jiongmin %T A deterministic affine-quadratic optimal control problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 633-661 %V 20 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013078/ %R 10.1051/cocv/2013078 %G en %F COCV_2014__20_3_633_0
Wang, Yuanchang; Yong, Jiongmin. A deterministic affine-quadratic optimal control problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 3, pp. 633-661. doi: 10.1051/cocv/2013078
Cité par Sources :