On indecomposable sets with applications
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 612-631

Voir la notice de l'article provenant de la source Numdam

In this note we show the characteristic function of every indecomposable set F in the plane is BV equivalent to the characteristic function a closed set See Formula in PDF \hbox{See Formula in PDF} . We show by example this is false in dimension three and above. As a corollary to this result we show that for every ϵ > 0 a set of finite perimeter S can be approximated by a closed subset See Formula in PDF \hbox{See Formula in PDF} with finitely many indecomposable components and with the property that See Formula in PDF \hbox{See Formula in PDF} and See Formula in PDF \hbox{See Formula in PDF} . We apply this corollary to give a short proof that locally quasiminimizing sets in the plane are BVl extension domains.

DOI : 10.1051/cocv/2013077
Classification : 28A75
Keywords: sets of finite perimeter, indecomposable sets
@article{COCV_2014__20_2_612_0,
     author = {Lorent, Andrew},
     title = {On indecomposable sets with applications},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {612--631},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {2},
     year = {2014},
     doi = {10.1051/cocv/2013077},
     mrnumber = {3264218},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013077/}
}
TY  - JOUR
AU  - Lorent, Andrew
TI  - On indecomposable sets with applications
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 612
EP  - 631
VL  - 20
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013077/
DO  - 10.1051/cocv/2013077
LA  - en
ID  - COCV_2014__20_2_612_0
ER  - 
%0 Journal Article
%A Lorent, Andrew
%T On indecomposable sets with applications
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 612-631
%V 20
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013077/
%R 10.1051/cocv/2013077
%G en
%F COCV_2014__20_2_612_0
Lorent, Andrew. On indecomposable sets with applications. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 612-631. doi: 10.1051/cocv/2013077

Cité par Sources :