Multi-phase structural optimization via a level set method
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 576-611

Voir la notice de l'article provenant de la source Numdam

We consider the optimal distribution of several elastic materials in a fixed working domain. In order to optimize both the geometry and topology of the mixture we rely on the level set method for the description of the interfaces between the different phases. We discuss various approaches, based on Hadamard method of boundary variations, for computing shape derivatives which are the key ingredients for a steepest descent algorithm. The shape gradient obtained for a sharp interface involves jump of discontinuous quantities at the interface which are difficult to numerically evaluate. Therefore we suggest an alternative smoothed interface approach which yields more convenient shape derivatives. We rely on the signed distance function and we enforce a fixed width of the transition layer around the interface (a crucial property in order to avoid increasing “grey” regions of fictitious materials). It turns out that the optimization of a diffuse interface has its own interest in material science, for example to optimize functionally graded materials. Several 2-d examples of compliance minimization are numerically tested which allow us to compare the shape derivatives obtained in the sharp or smoothed interface cases.

DOI : 10.1051/cocv/2013076
Classification : 49Q10, 74P15, 74P20, 49J50
Keywords: shape and topology optimization, multi-materials, signed distance function
@article{COCV_2014__20_2_576_0,
     author = {Allaire, G. and Dapogny, C. and Delgado, G. and Michailidis, G.},
     title = {Multi-phase structural optimization \protect\emph{via }a level set method},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {576--611},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {2},
     year = {2014},
     doi = {10.1051/cocv/2013076},
     zbl = {1287.49045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013076/}
}
TY  - JOUR
AU  - Allaire, G.
AU  - Dapogny, C.
AU  - Delgado, G.
AU  - Michailidis, G.
TI  - Multi-phase structural optimization via a level set method
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 576
EP  - 611
VL  - 20
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013076/
DO  - 10.1051/cocv/2013076
LA  - en
ID  - COCV_2014__20_2_576_0
ER  - 
%0 Journal Article
%A Allaire, G.
%A Dapogny, C.
%A Delgado, G.
%A Michailidis, G.
%T Multi-phase structural optimization via a level set method
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 576-611
%V 20
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013076/
%R 10.1051/cocv/2013076
%G en
%F COCV_2014__20_2_576_0
Allaire, G.; Dapogny, C.; Delgado, G.; Michailidis, G. Multi-phase structural optimization via a level set method. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 576-611. doi: 10.1051/cocv/2013076

Cité par Sources :