Periodic stabilization for linear time-periodic ordinary differential equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 269-314

Voir la notice de l'article provenant de la source Numdam

This paper studies the periodic feedback stabilization of the controlled linear time-periodic ordinary differential equation: (t) = A(t)y(t) + B(t)u(t), t ≥ 0, where [A(·), B(·)] is a T-periodic pair, i.e., A(·) ∈ L(ℝ+; ℝn×n) and B(·) ∈ L(ℝ+; ℝn×m) satisfy respectively A(t + T) = A(t) for a.e. t ≥ 0 and B(t + T) = B(t) for a.e. t ≥ 0. Two periodic stablization criteria for a T-period pair [A(·), B(·)] are established. One is an analytic criterion which is related to the transformation over time T associated with A(·); while another is a geometric criterion which is connected with the null-controllable subspace of [A(·), B(·)]. Two kinds of periodic feedback laws for a T-periodically stabilizable pair [ A(·), B(·) ] are constructed. They are accordingly connected with two Cauchy problems of linear ordinary differential equations. Besides, with the aid of the geometric criterion, we find a way to determine, for a given T-periodic A(·), the minimal column number m, as well as a time-invariant n×m matrix B, such that the pair [A(·), B] is T-periodically stabilizable.

DOI : 10.1051/cocv/2013064
Classification : 34H15, 49N20
Keywords: linear time-periodic controlled odes, periodic stabilization, null-controllable subspaces, the transformation over time T
@article{COCV_2014__20_1_269_0,
     author = {Wang, Gengsheng and Xu, Yashan},
     title = {Periodic stabilization for linear time-periodic ordinary differential equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {269--314},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {1},
     year = {2014},
     doi = {10.1051/cocv/2013064},
     mrnumber = {3182700},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013064/}
}
TY  - JOUR
AU  - Wang, Gengsheng
AU  - Xu, Yashan
TI  - Periodic stabilization for linear time-periodic ordinary differential equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 269
EP  - 314
VL  - 20
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013064/
DO  - 10.1051/cocv/2013064
LA  - en
ID  - COCV_2014__20_1_269_0
ER  - 
%0 Journal Article
%A Wang, Gengsheng
%A Xu, Yashan
%T Periodic stabilization for linear time-periodic ordinary differential equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 269-314
%V 20
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013064/
%R 10.1051/cocv/2013064
%G en
%F COCV_2014__20_1_269_0
Wang, Gengsheng; Xu, Yashan. Periodic stabilization for linear time-periodic ordinary differential equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 269-314. doi: 10.1051/cocv/2013064

Cité par Sources :