Approximation of the pareto optimal set for multiobjective optimal control problems using viability kernels
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 95-115

Voir la notice de l'article provenant de la source Numdam

This paper provides a convergent numerical approximation of the Pareto optimal set for finite-horizon multiobjective optimal control problems in which the objective space is not necessarily convex. Our approach is based on Viability Theory. We first introduce a set-valued return function V and show that the epigraph of V equals the viability kernel of a certain related augmented dynamical system. We then introduce an approximate set-valued return function with finite set-values as the solution of a multiobjective dynamic programming equation. The epigraph of this approximate set-valued return function equals to the finite discrete viability kernel resulting from the convergent numerical approximation of the viability kernel proposed in [P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre. Birkhauser, Boston (1999) 177-247. P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Set-Valued Analysis 8 (2000) 111-126]. As a result, the epigraph of the approximate set-valued return function converges to the epigraph of V. The approximate set-valued return function finally provides the proposed numerical approximation of the Pareto optimal set for every initial time and state. Several numerical examples illustrate our approach.

DOI : 10.1051/cocv/2013056
Classification : 49M2, 49L20, 54C60, 90C29
Keywords: multiobjective optimal control, Pareto optimality, viability theory, convergent numerical approximation, dynamic programming
@article{COCV_2014__20_1_95_0,
     author = {Guigue, Alexis},
     title = {Approximation of the pareto optimal set for multiobjective optimal control problems using viability kernels},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {95--115},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {1},
     year = {2014},
     doi = {10.1051/cocv/2013056},
     mrnumber = {3182692},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013056/}
}
TY  - JOUR
AU  - Guigue, Alexis
TI  - Approximation of the pareto optimal set for multiobjective optimal control problems using viability kernels
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 95
EP  - 115
VL  - 20
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013056/
DO  - 10.1051/cocv/2013056
LA  - en
ID  - COCV_2014__20_1_95_0
ER  - 
%0 Journal Article
%A Guigue, Alexis
%T Approximation of the pareto optimal set for multiobjective optimal control problems using viability kernels
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 95-115
%V 20
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013056/
%R 10.1051/cocv/2013056
%G en
%F COCV_2014__20_1_95_0
Guigue, Alexis. Approximation of the pareto optimal set for multiobjective optimal control problems using viability kernels. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 95-115. doi: 10.1051/cocv/2013056

Cité par Sources :