Voir la notice de l'article provenant de la source Numdam
We prove pointwise gradient bounds for entire solutions of pde's of the form ℒu(x) = ψ(x, u(x), ∇u(x)), where ℒ is an elliptic operator (possibly singular or degenerate). Thus, we obtain some Liouville type rigidity results. Some classical results of J. Serrin are also recovered as particular cases of our approach.
@article{COCV_2013__19_2_616_0, author = {Farina, Alberto and Valdinoci, Enrico}, title = {Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde's}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {616--627}, publisher = {EDP-Sciences}, volume = {19}, number = {2}, year = {2013}, doi = {10.1051/cocv/2012024}, mrnumber = {3049726}, zbl = {1273.35126}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012024/} }
TY - JOUR AU - Farina, Alberto AU - Valdinoci, Enrico TI - Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde's JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 616 EP - 627 VL - 19 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012024/ DO - 10.1051/cocv/2012024 LA - en ID - COCV_2013__19_2_616_0 ER -
%0 Journal Article %A Farina, Alberto %A Valdinoci, Enrico %T Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde's %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 616-627 %V 19 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012024/ %R 10.1051/cocv/2012024 %G en %F COCV_2013__19_2_616_0
Farina, Alberto; Valdinoci, Enrico. Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde's. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 2, pp. 616-627. doi: 10.1051/cocv/2012024
Cité par Sources :