Existence of solutions for a semilinear elliptic system
ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 2, pp. 574-586

Voir la notice de l'article provenant de la source Numdam

This paper deals with the existence of solutions to the following system:

-Δu+u=α α+βa(x)|v| β |u| α-2 uin N -Δv+v=β α+βa(x)|u| α |v| β-2 vin N .
-Δu+u=αα+βa(x)|v|β|u|α-2u inRN-Δv+v=βα+βa(x)|u|α|v|β-2v inRN. With the help of the Nehari manifold and the linking theorem, we prove the existence of at least two nontrivial solutions. One of them is positive. Our main tools are the concentration-compactness principle and the Ekeland’s variational principle.

DOI : 10.1051/cocv/2012022
Classification : 35J45, 35J50, 35J60
Keywords: semilinear elliptic systems, Nehari manifold, concentration-compactness principle, variational methods
@article{COCV_2013__19_2_574_0,
     author = {Benrhouma, Mohamed},
     title = {Existence of solutions for a semilinear elliptic system},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {574--586},
     publisher = {EDP-Sciences},
     volume = {19},
     number = {2},
     year = {2013},
     doi = {10.1051/cocv/2012022},
     mrnumber = {3049724},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012022/}
}
TY  - JOUR
AU  - Benrhouma, Mohamed
TI  - Existence of solutions for a semilinear elliptic system
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2013
SP  - 574
EP  - 586
VL  - 19
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012022/
DO  - 10.1051/cocv/2012022
LA  - en
ID  - COCV_2013__19_2_574_0
ER  - 
%0 Journal Article
%A Benrhouma, Mohamed
%T Existence of solutions for a semilinear elliptic system
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2013
%P 574-586
%V 19
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012022/
%R 10.1051/cocv/2012022
%G en
%F COCV_2013__19_2_574_0
Benrhouma, Mohamed. Existence of solutions for a semilinear elliptic system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 2, pp. 574-586. doi: 10.1051/cocv/2012022

Cité par Sources :