Γ-limits of convolution functionals
ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 2, pp. 486-515

Voir la notice de l'article provenant de la source Numdam

We compute the Γ-limit of a sequence of non-local integral functionals depending on a regularization of the gradient term by means of a convolution kernel. In particular, as Γ-limit, we obtain free discontinuity functionals with linear growth and with anisotropic surface energy density.

DOI : 10.1051/cocv/2012018
Classification : 49Q20, 49J45, 49M30
Keywords: free discontinuities, Γ-convergence, anisotropy
@article{COCV_2013__19_2_486_0,
     author = {Lussardi, Luca and Magni, Annibale},
     title = {$\Gamma $-limits of convolution functionals},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {486--515},
     publisher = {EDP-Sciences},
     volume = {19},
     number = {2},
     year = {2013},
     doi = {10.1051/cocv/2012018},
     zbl = {1263.49010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012018/}
}
TY  - JOUR
AU  - Lussardi, Luca
AU  - Magni, Annibale
TI  - $\Gamma $-limits of convolution functionals
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2013
SP  - 486
EP  - 515
VL  - 19
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012018/
DO  - 10.1051/cocv/2012018
LA  - en
ID  - COCV_2013__19_2_486_0
ER  - 
%0 Journal Article
%A Lussardi, Luca
%A Magni, Annibale
%T $\Gamma $-limits of convolution functionals
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2013
%P 486-515
%V 19
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012018/
%R 10.1051/cocv/2012018
%G en
%F COCV_2013__19_2_486_0
Lussardi, Luca; Magni, Annibale. $\Gamma $-limits of convolution functionals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 2, pp. 486-515. doi: 10.1051/cocv/2012018

Cité par Sources :