Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain
ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 2, pp. 358-384

Voir la notice de l'article provenant de la source Numdam

In this paper, we study a class of Initial-Boundary Value Problems proposed by Colin and Ghidaglia for the Korteweg-de Vries equation posed on a bounded domain (0,L). We show that this class of Initial-Boundary Value Problems is locally well-posed in the classical Sobolev space Hs(0,L) for s > -3/4, which provides a positive answer to one of the open questions of Colin and Ghidaglia [Adv. Differ. Equ. 6 (2001) 1463-1492].

DOI : 10.1051/cocv/2012012
Classification : 35Q53
Keywords: The kortweg-de Vries equation, well-posedness, non-homogeneous boundary value problem
@article{COCV_2013__19_2_358_0,
     author = {Kramer, Eugene and Rivas, Ivonne and Zhang, Bing-Yu},
     title = {Well-posedness of a class of non-homogeneous boundary value problems of the {Korteweg-de} {Vries} equation on a finite domain},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {358--384},
     publisher = {EDP-Sciences},
     volume = {19},
     number = {2},
     year = {2013},
     doi = {10.1051/cocv/2012012},
     mrnumber = {3049715},
     zbl = {1273.35238},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012012/}
}
TY  - JOUR
AU  - Kramer, Eugene
AU  - Rivas, Ivonne
AU  - Zhang, Bing-Yu
TI  - Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2013
SP  - 358
EP  - 384
VL  - 19
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012012/
DO  - 10.1051/cocv/2012012
LA  - en
ID  - COCV_2013__19_2_358_0
ER  - 
%0 Journal Article
%A Kramer, Eugene
%A Rivas, Ivonne
%A Zhang, Bing-Yu
%T Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2013
%P 358-384
%V 19
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012012/
%R 10.1051/cocv/2012012
%G en
%F COCV_2013__19_2_358_0
Kramer, Eugene; Rivas, Ivonne; Zhang, Bing-Yu. Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 2, pp. 358-384. doi: 10.1051/cocv/2012012

Cité par Sources :