Voir la notice de l'article provenant de la source Numdam
We consider the linear wave equation with Dirichlet boundary conditions in a bounded interval, and with a control acting on a moving point. We give sufficient conditions on the trajectory of the control in order to have the exact controllability property.
@article{COCV_2013__19_1_301_0, author = {Castro, Carlos}, title = {Exact controllability of the 1-d wave equation from a moving interior point}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {301--316}, publisher = {EDP-Sciences}, volume = {19}, number = {1}, year = {2013}, doi = {10.1051/cocv/2012009}, mrnumber = {3023072}, zbl = {1258.93022}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012009/} }
TY - JOUR AU - Castro, Carlos TI - Exact controllability of the 1-d wave equation from a moving interior point JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 301 EP - 316 VL - 19 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012009/ DO - 10.1051/cocv/2012009 LA - en ID - COCV_2013__19_1_301_0 ER -
%0 Journal Article %A Castro, Carlos %T Exact controllability of the 1-d wave equation from a moving interior point %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 301-316 %V 19 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012009/ %R 10.1051/cocv/2012009 %G en %F COCV_2013__19_1_301_0
Castro, Carlos. Exact controllability of the 1-d wave equation from a moving interior point. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 1, pp. 301-316. doi: 10.1051/cocv/2012009
Cité par Sources :